3. Периметр рівнобедреного трикутника дорівнює 17 см, а його основа — 5 см. Знайдіть бічну сторону трикутника.
А) 12 см; Б) 10 см; В) 8 см; Г) б см.
4. Один з кутів трикутника дорівнює 72°. Знайдіть суму двох інших кутів трикутника.
А) 98°; Б) 108°; В) 118°; Г) визначити неможливо.
5. Кола, радіуси яких 6 см і 2 см, мають внутрішній дотик. Знайдіть відстань між їх центрами.
А) 2 см; Б) 4 см; В) б см; Г) 8 см.
Достатній рівень навчальних досягнень
6. Один з кутів, що утворилися при перетині двох паралельних прямих січною, дорівнює 78°. Знайдіть градусні міри решти семи кутів.
7. Основа та бічна сторона рівнобедреного трикутника відносяться як 3 : 4. Знайдіть сторони цього трикутника, якщо його периметр дорівнює 88 см.
Високий рівень навчальних досягнень
8. Вписане в рівнобедрений трикутник коло ділить бічну сторону у відношенні 2 : 3, починаючи від основи. Знайдіть сторони трикутника, якщо його периметр дорівнює 70 см.
где а и в - основания трапеции
h-высота
Из вершины угла меньшего основания опустим на большее основание перпендикуляр. Получатся 2 отрезка. Меньший из них равен : (большее основание - меньшее)\2
Так мы найдем меньший отрезок
Периметр равен: большее основание+меньшее+ 2*боковые стороны (т.к.они равны)
Выразим из этой полученной формулы боковую сторону :(Периметр -(сумма оснований))\2
Так мы найдем боковую сторону
У нас есть меньший отрезок и боковая сторона. По формуле Пифагора выразим высоту
Затем подставим числа в формулу площади. Все. Решено.
Для начала найдем неизвестные угол и стороны ∆ АКЕ. Сумма углов треугольника 180° => угол КАЕ=180°-(54°+60°=66°
По т.синусов АЕ=АК•sin54°/sin60°. KE=AK•sin66°/sin60°
sin60°=0.8660; sin54°= 0.8090; sin66°=0.9135
AE=20•0,8090/0,8660=18,683≈18,7 см; KE=20•0,9135/0,8660=21,097≈ 21,1 см
Стороны и углы треугольника ВСD имеют те же значения, что и соответствующие углы и стороны ∆ АКЕ, но в условии не указано, какие именно элементы двух треугольников равны. Если в ∆ ВСD сторона ВС=АК, и ∠D=∠Е, то ∠В=∠А=66°,∠С=∠К=54°, ВС=20 см, ВD=AE≈18,7= см, CD=KE≈21,1 см