3. Сформулируйте свойство биссектрисы треугольника. (Рис., пояснения).
4. Сформулируйте и докажите теорему о площади треугольника.
5. Решите задачу. Найдите площадь параллелограмма с основанием 5см и высотой 4см.
6. Решите задачу. В равнобедренной трапеции основания равны 2см и 20см, а боковая сторона 15см. Найдите синус и косинус острого угла трапеции.
4
145+35=180 градусов как внутренние односторонние, значит FP||EK
X=<50=50 градусов как накрест лежащие
5
Угол вертикальный с < 51 градус равен
51 градус
129+51=180 градусов как односторонние, значит ВС ||АD
<CBE=<AEB=52 градуса как накрест лежащие
<АВС=2×<СВЕ=2×52=104 градуса
Х=180-<АВС=180-104=76 градусов как односторонние
6
<112+<68=180 градусов, значит NK||MP
<78=<КРМ=78 градусов как накрест лежащие
<ТРМ=<КРМ:2=78:2=39 градусов
Х=<ТРМ=39 градусов как накрест лежащие
В каждой вершине параллелепипеда сходятся смежные стороны трех граней, и их диагонали образуют треугольник. (см. рисунок вложения)
В данном случае диагонали равны 30, 40 и 70 см.
По теореме о неравенстве треугольников: длина любой стороны треугольника меньше суммы длин двух других сторон.
Здесь имеем "треугольник" и три длины, и 70=30+40.
Тогда меньшие стороны "лягут" на большую, и треугольник не получится, как и параллелепипед с такими диагоналями граней.
Не могут диагонали трех граней прямоугольного параллелепипеда иметь длины 30 см, 40 см и 70 см.