В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
darareutova376
darareutova376
13.04.2020 13:36 •  Геометрия

4. Из точки, отстоящей от плоскости на расстоянии 10 см, проведены две наклонные под углом 30° к плоскости, причем их проекции образуют угол 120°. Найдите расстояние между концами наклонных.

Показать ответ
Ответ:
gsubxdu
gsubxdu
31.05.2022 02:24

[1] В треугольнике с углами 45, 90 стороны относятся как 1:1:√2

(равнобедренный прямоугольный)

3) n=m

 

[2] Сумма острых углов прямоугольного треугольника равна 90

В 1 градусе 60 минут (1° = 60')

2) 37°33' +52°27' =(37+52)° (33+27)' =89°60' =90°  

[3] Треугольники подобны по двум углам. Чтобы доказать их равенство, достаточно доказать равенство соответственных (т.е. лежащих против равных углов) сторон.

2) MN=AP  

[4] В треугольнике с углами 30, 90 стороны относятся как 1:√3:2

1) с= 0,5 b  

[5] Биссектриса - ГМТ равноудаленных от сторон угла.

(расстояние измеряется длиной перпендикуляра)

1) биссектриса  

[6] Медиана из прямого угла (т.е. проведенная к гипотенузе) равна половине гипотенузы.

2) медиана

0,0(0 оценок)
Ответ:
eremenko6kirov
eremenko6kirov
04.04.2022 17:28

Решение.
Возможны два случая взаимного расположения прямой и окружностей.

1. Пусть окружность с центром О1 имеет радиус r , окружность центром O2 имеет радиус R, а окружность с центром O имеет радиус x и касается двух данных окружностей и их общей внешней касательной a.

 

Обозначим через A, B и C точки касания окружностей с прямой a, а через K, M и N — точки касания самих окружностей. Отрезки O1A, O2B и OC перпендикулярны прямой a как радиусы, проведенные в точки касания.

 

Опустим перпендикуляр O1D из центра меньшей из данных окружностей на радиус O2B большей окружности и перпендикуляры OE и OF из точки O на радиусы O1A и O2B. Поскольку O1A // (палочи прямые) O2B , точки E, O и F лежат на одной прямой, а так как O1DFE — прямоугольник, то O1D=EF.

 

Кроме того: O1O = r+x, O1O2 = r+R , O2O = R+x , O1E = r-x , O2D = R-r , O1D =EF=EO+OF , O2F = R-x.

 

Далее имеем:

(R+r)^2 - (R-r)^2 (все выражение под корнем) = (r+x)^2 - (r-x)^2(все выражение под корнем) = (R+x)^2 - (R-x)^2;

2*Rx (Rx под корнем) = 2* rx (rx под корнем) + 2*Rx (Rx под корнем)

 

2. Пусть теперь окружность с центром O1 имеет радиус R, окружность с центром O имеет радиус r, а окружность центром O2 имеет радиус x и касается двух данных окружностей и их общей внешней касательной a (см. тот же рисунок). Аналогично случаю 1 имеем:

 

(x+R)^2 - (x-R)^2 (все выражение под корнем) = (R+r)^2 - (R-r)^2 (все выражение под корнем) + (x+r )^2 - (x-r)^2(все выражение под корнем) ;

2*Rx(Rx под корнем) = 2* Rr(Rr под корнем) +2*rx(rx под корнем)

 

 

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота