5. Довжина відрізка АВ дорівнює 12 см. Скільки існуе на прямій АВ точок, сума відстаней від кожної з яких до кінців відрізка АВ дорівнює 14 см? A) Безліч; B) 2; Б) 1; Г) жодної.
По условиям угол АДВ=углу СДА, а так как диагональ в трапеции является секущей при её параллельных основаниях, то угол СВД=углу АДВ, как внутренние разносторонние, и следовательно равен углу СДВ. Рассмотрим ∆ВСД. Так как 2 угла при его основании равны, то он является равнобедренным и стороны ВС=СД=10см. Проведём высоту СН. Она делит нижнее основание так, что АН= ВС=10см, тогда отрезок НД=18-10=8см. Рассмотрим ∆СДН. Он прямоугольный так как Н - высота. Также в нём уже известны 2 стороны, и теперь можно найти высоту СН по теореме Пифагора: СН²=СД²-НД²:
СН=√(10²-8²)=√(100-64)=√36=6см;
СН=6см. Теперь найдём площадь трапеции зная высоту по формуле:
1.Пусть одна сторона равна х, тогда другая 6х. У параллелограмма противолежащие стороны равны. Сумма сторон равна 84. Тогда составим уравнение
х+х+6х+6х=84
14х=84
х=84:14
х=6
Тогда 6х=6×6=36
Проверка: 6+6+36+36=84
ответ: 6; 6; 36; 36
2.В прямоугольнике противоположные стороны равны. Значит ВС=АD=18см
BD и АС являются диагоналями прямоугольника ABCD.
Диагонали в прямоугольнике равны, т.е BD=АС=22см
О-точка пересечения диагоналей, которая делит их пополам. Значит ОD=ОА=ОВ=ОС=1/2 BD=11см
Рboc=ОB+ОC+ВC
Рboc=11+11+18=40см
3.диагонали ромба являются биссектрисами его углов (то есть делят их пополам);
сумма соседних углов ромба равна 180°;
противоположные углы ромба равны
4.Диагональ АС делит параллелограмм на 2 подобных треугольника. Углы NAB=PCD, угол ABN=CDP и следовательно углы BNA= СPD, отсюда следует что прямоугольники ABN и CDP также подобны. Следовательно прямые BN и PD равны между собой. Что и требовалось доказать
5.Примем коэффициент отношения AF:FD=a. Тогда AF=a, FD=5a. Их сумма 6а=18 см, ⇒ а=18:6=3 см. Отрезок АF=3 см, отрезок FD=5•3=15 см АВСD - параллелограмм. ВС║AD, CF – секущая. ∠ВСF=∠СFD как накрестлежащие. Но ∠FCD=∠BCF (СF – биссектриса) ⇒ ∠CFD=∠FCD . Углы при основании FC треугольника FDC равны, следовательно, он равнобедренный и CD=FD=15 см ( свойство). Запомним: Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник. Противоположные стороны параллелограмма равны, ⇒ АВ=CD=15 см. Периметр =сумма всех сторон АВСD. Р=2•(18+15)=66 см
ответ: S=84см²
Объяснение:
По условиям угол АДВ=углу СДА, а так как диагональ в трапеции является секущей при её параллельных основаниях, то угол СВД=углу АДВ, как внутренние разносторонние, и следовательно равен углу СДВ. Рассмотрим ∆ВСД. Так как 2 угла при его основании равны, то он является равнобедренным и стороны ВС=СД=10см. Проведём высоту СН. Она делит нижнее основание так, что АН= ВС=10см, тогда отрезок НД=18-10=8см. Рассмотрим ∆СДН. Он прямоугольный так как Н - высота. Также в нём уже известны 2 стороны, и теперь можно найти высоту СН по теореме Пифагора: СН²=СД²-НД²:
СН=√(10²-8²)=√(100-64)=√36=6см;
СН=6см. Теперь найдём площадь трапеции зная высоту по формуле:
S=(ВС+АД)÷2×СН=(10+18)÷2×6=28÷2×6=
=14×6=84см²; S=84см²
1.Пусть одна сторона равна х, тогда другая 6х. У параллелограмма противолежащие стороны равны. Сумма сторон равна 84. Тогда составим уравнение
х+х+6х+6х=84
14х=84
х=84:14
х=6
Тогда 6х=6×6=36
Проверка: 6+6+36+36=84
ответ: 6; 6; 36; 36
2.В прямоугольнике противоположные стороны равны. Значит ВС=АD=18см
BD и АС являются диагоналями прямоугольника ABCD.
Диагонали в прямоугольнике равны, т.е BD=АС=22см
О-точка пересечения диагоналей, которая делит их пополам. Значит ОD=ОА=ОВ=ОС=1/2 BD=11см
Рboc=ОB+ОC+ВC
Рboc=11+11+18=40см
3.диагонали ромба являются биссектрисами его углов (то есть делят их пополам);
сумма соседних углов ромба равна 180°;
противоположные углы ромба равны
4.Диагональ АС делит параллелограмм на 2 подобных треугольника. Углы NAB=PCD, угол ABN=CDP и следовательно углы BNA= СPD, отсюда следует что прямоугольники ABN и CDP также подобны. Следовательно прямые BN и PD равны между собой. Что и требовалось доказать
5.Примем коэффициент отношения AF:FD=a. Тогда AF=a, FD=5a. Их сумма 6а=18 см, ⇒ а=18:6=3 см. Отрезок АF=3 см, отрезок FD=5•3=15 см АВСD - параллелограмм. ВС║AD, CF – секущая. ∠ВСF=∠СFD как накрестлежащие. Но ∠FCD=∠BCF (СF – биссектриса) ⇒ ∠CFD=∠FCD . Углы при основании FC треугольника FDC равны, следовательно, он равнобедренный и CD=FD=15 см ( свойство). Запомним: Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник. Противоположные стороны параллелограмма равны, ⇒ АВ=CD=15 см. Периметр =сумма всех сторон АВСD. Р=2•(18+15)=66 см