5. В треугольнике ABC известно, что ABBC-11 см. Серединный перпендикуля к стороне Aв пересекает сторону DC в точке К. Найдите A C, если периметр треугольника ВК С равен 50 см.
На основании равнобедренного треугольника отметили две различные точки F и E , а на боковых сторонах AB и –BC точки D и G соответственно так, что AD +AE = AC и CF+ CG = AC. Найти угол между прямыми DF и EG, если угол ABC = 70°.
На основании равнобедренного треугольника отметили две различные точки F и E , а на боковых сторонах AB и –BC точки D и G соответственно так, что AD +AE = AC и CF+ CG = AC. Найти угол между прямыми DF и EG, если угол ABC = 70°.
Объяснение:
ΔАВС-равнобедренный,значит ∠А=∠В=(180°-70°):2=55°.
По условию АD+АЕ=АС и CF+ CG = AC ⇒АD=ЕС и AF=CG.
ΔADF ≈ΔCFG по 2 пропорциональным сторонам и равному углу между ними :∠А=∠В и AD/EC=AF/CG ⇒соответственные углы равны ∠1=∠2 ,∠3=∠4.
ΔFEM : найдем угол ∠М ; ∠Е=∠1, ∠F=∠4 . Сумма углов ∠F+∠Е=180°-55°=125° , тогда ∠М=180°-125°=55°
В прямоугольном треугольнике АВС, ∠С=90°. Найти указанную сторону , если а) АВ-? , sinА=0,2 ,ВС=5; б) АВ-? , cosА=0,6 ,ВС=12 ;
в)ВС-? ,sinА=2√10/11, АС=15
Объяснение:
а)Синусом острого угла прямоугольного треугольника называется отношение противолежащего этому углу катета к гипотенузе :
sinА=СВ/АВ , 0,2=5/ АВ , АВ=50:2=25.
б) По основному тригонометрическому тождеству sin²A+cos²A =1 получаем : sin²A+0,6² =1 , sin²A=0,64 , sinA=0,8 , т.к 0° <∠А<90°.
sinА=СВ/АВ , 0,6=12/ АВ , АВ=120:6=20.
в) 1+сtg²А=1/sin²А ( формула),
sin²А=(2√10/11)²=40/121 , 1/sin²А= 121/40,
1+сtg²А=121/40 , сtg²А=81/40 , сtgА=9/(2√10).
Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему катету :
сtgА=АС/СВ , 9/(2√10)=15/ВС , ВС=10√10/3