Ну, я надеюсь, дано ты запишешь сам. Вот решение, как сделаешь рисунок, все будет понятно: т.к. угол DAC=30 градусам, значит катет лежащий на против него равен половине гипотенузы (а она АС равна 12), а значит DC равен 6. Т. к. ABCD прямоугольник, значит и противоположная сторона АВ равна тоже 6. АС диагональ и она делится в точке пересечения по палам и следовательно АО = 6. В треугольнике АОВ все углы 60, т.к. угол DAO = 30 и следовательно угол ОАВ равен 90-30=60, и значит все углы тоже равны 60. И значит периметр треугольника равен 6+6=6= 18. Вот и все.
Даны четыре точки - три из них всегда лежат в одной плоскости. Пусть это будут точки А, В и С. Тогда четвертая точка - D - не лежит в этой плоскости.
Рисунок к задаче в приложении. Получили пирамиду. У неё четыре вершины. В каждой вершине пересекаются 3 пары рёбер. Всего пересекающихся пар прямых будет: N = 4*3 = 12 .
Ну, я надеюсь, дано ты запишешь сам. Вот решение, как сделаешь рисунок, все будет понятно: т.к. угол DAC=30 градусам, значит катет лежащий на против него равен половине гипотенузы (а она АС равна 12), а значит DC равен 6. Т. к. ABCD прямоугольник, значит и противоположная сторона АВ равна тоже 6. АС диагональ и она делится в точке пересечения по палам и следовательно АО = 6. В треугольнике АОВ все углы 60, т.к. угол DAO = 30 и следовательно угол ОАВ равен 90-30=60, и значит все углы тоже равны 60. И значит периметр треугольника равен 6+6=6= 18. Вот и все.
Даны четыре точки - три из них всегда лежат в одной плоскости. Пусть это будут точки А, В и С. Тогда четвертая точка - D - не лежит в этой плоскости.
Рисунок к задаче в приложении. Получили пирамиду. У неё четыре вершины. В каждой вершине пересекаются 3 пары рёбер. Всего пересекающихся пар прямых будет: N = 4*3 = 12 .
Запишем такие пары прямых:
ABxAC, ABxAD, ACxAD - три из вершины А.
BAxBD, BAxBC, BCxDD - три из вершины В.
CAxCB, CBxCD, CAxCD - три из вершины С.
DAxDB, DBxDC, DCxDA - три из вершины D.
А вот прямые AD и BC - не пересекаются.