8. Bидомо, что четырехугольник А1 В1 С1 D1 получили в результате поворота правильного четырехугольника АВСD). 1) 3найдить радиус окружности, вписанной в четырехугольник А1 В1 С1 D1 если периметр четырехугольника АВСD равна 24 см. 2) 0бчислить площадь четырехугольника А1 В1 С1 D1
Мы рисуем отрезок АВ. Находим середину отрезка( для простоты и удобства, советую взять отрезок 4 см. Соответственно, 2 см и будет середина). У меня середина отрезка помечена зелёным цветом. Затем, ставим, где-нибудь рядом, точку М ( она красного цвета). Берём линейку, соединяем линейкой точку М и середину отрезка. Слабо проводим линию, чтобы она была немного дальше от середины. Отмеряем расстояние от точки М до середины отрезка. И отмечаем новую точку на этом расстоянии, от середины отрезка. Допустим F. Она и будет симметрична точке М
Формула радиуса вписанной в прямоугольный треугольник окружности
r=(b-c):2
Второй катет можно найти по т.Пифагора, и можно обратить внимание на то, что треугольник "египетский" с отношением 3:4:5.
Отсюда АС=6 см.⇒
r=(8+6-10):2=2 (см)
Расстояние от плоскости треугольника до центра шара ОН=4.
Радиус R шара из ∆ ОНМ по т.Пифагора:
R=OМ=√(HO²+HM²)=√(16+4)=2√5 см