На сторонах AB, BC, CD и DA четырехугольника ABCD отмечены соответственные точки M N P и Q так что, AM=СP, BN=DQ, BM=DP, NC=QA. Докажите, что ABCD, MNPQ - параллелограммы.
***
Обозначим равные отрезки одинаковыми буквами:
АМ=СР=а
BN=DQ=b
BM=DP=c
NC=QA=d
АВ=а+с
СD=a+c ⇒ AB=CD
BC=b+d
AD=b+d ⇒ BC=AD
В четырехугольнике АВСD противоположные стороны попарно равны. ⇒
АВСD - параллелограмм ( 2-й признак)
–––––––––––––––––––––
Рассмотрим ∆ MBN и ∆ PDQ
∠ А=∠С как противоположные углы параллелограмма АВСD.
Содержащие эти углы стороны равны по условию ⇒
∆ MBN = ∆ PDQ по 1-му признаку.⇒ MN=PQ
Аналогично доказывается равенство сторон MQ и NP
В четырехугольнике MNРQ противоположные стороны равны ⇒ MNРQ - параллелограмм.
В чем же особенность этих задач? Задачи на построение не просты. Не существует единого алгоритма для решения всех таких задач. Каждая из них по-своему уникальна, и каждая требует индивидуального подхо да для решения. Именно поэтому научиться решать задачи на построение чрезвычайно трудно, а, порой, практически невозможно.Но эти задачи дают уникальный материал для индивидуального творческого поиска путей решения с своей интуиции и подсознания. Любая ли задача решается с циркуля и линейки? Еще в древности греческие математики встретились с тремя задачами на построение, которые не поддавались решению.
На сторонах AB, BC, CD и DA четырехугольника ABCD отмечены соответственные точки M N P и Q так что, AM=СP, BN=DQ, BM=DP, NC=QA. Докажите, что ABCD, MNPQ - параллелограммы.
***
Обозначим равные отрезки одинаковыми буквами:
АМ=СР=а
BN=DQ=b
BM=DP=c
NC=QA=d
АВ=а+с
СD=a+c ⇒ AB=CD
BC=b+d
AD=b+d ⇒ BC=AD
В четырехугольнике АВСD противоположные стороны попарно равны. ⇒
АВСD - параллелограмм ( 2-й признак)
–––––––––––––––––––––
Рассмотрим ∆ MBN и ∆ PDQ
∠ А=∠С как противоположные углы параллелограмма АВСD.
Содержащие эти углы стороны равны по условию ⇒
∆ MBN = ∆ PDQ по 1-му признаку.⇒ MN=PQ
Аналогично доказывается равенство сторон MQ и NP
В четырехугольнике MNРQ противоположные стороны равны ⇒ MNРQ - параллелограмм.
да для решения. Именно поэтому научиться решать задачи на построение чрезвычайно трудно, а, порой, практически невозможно.Но эти задачи дают уникальный материал для индивидуального творческого поиска путей решения с своей интуиции и подсознания.
Любая ли задача решается с циркуля и линейки? Еще в древности греческие математики встретились с тремя задачами на построение, которые не поддавались решению.