1) Основание прямой призмы – прямоугольный треугольник с гипотенузой 15см и катетом 12см. Найдите площадь боковой поверхности, если грань содержащая больший катет – квадрат. Решение. По Пифагору найдем второй катет основания призмы: √(15²-12²)=√(27*3)=9см. Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано). Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы. Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ. Решение. Условие для однозначного решения не полное. Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2". Проходящее - содержащее это ребро или пересекающее его? Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины? Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN). Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ. Вывод: однозначного решения по задаче с таким условием нет.
Воспользуемся теоремой о серединном перпендикуляре к отрезку:
"Любая точка, лежащая на серединном перпендикуляре к отрезку равноудалена от концов этого отрезка". Точка D лежит на серединном перпендикуляре к отрезку АВ и к отрезку ВС.
Следовательно, верны равенства: DB=DA=DC
Т.к. по условию, DB=26,1 см, то DA=DC=26,1 см
3 ответ:
9
Объяснение:
Три высоты пересекаются в одной точке. Т.к. две высоты пересекаются в одной точке, через эту точку проходит и третья высота, таким образом BN - высота р/б тр-ка потому что проходит через точку пересечения высот, т.к. AC - основание BN - не только высота но и медиана, значит n - середина AC, NC = 1/2 AC = 9
4Точка D равноудалена от всех сторон треугольника, то она является точкой пересечения биссектрис данного треугольника.
Против меньшего угла всегда расположена короткая сторона.
Найдем угол, под которым видна короткая сторона, используя данные углы
Сумма углов треугольника равна 180 градусам
Получаем, 180 - (106/2 + 52/2) = 101 градус
5 Решение:
Серединный перпендикуляр пересекает сторону ВС в т.К.
Рассмотрим треугольники :ВКД и ДКС-они прямоугольные.
1) ДК- общая,
2)ВК=КС- по условию,
3)УголВКД=углуДКС, отсюда следует,что треугольники: ВКД=ДКС-по признаку равенства треугольников( по двум сторонам и углу между ними).
Решение.
По Пифагору найдем второй катет основания призмы:
√(15²-12²)=√(27*3)=9см.
Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано).
Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы.
Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ.
Решение.
Условие для однозначного решения не полное.
Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2".
Проходящее - содержащее это ребро или пересекающее его?
Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины?
Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN).
Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ.
Вывод: однозначного решения по задаче с таким условием нет.
1 на рисунке 2 ответ:
DA=26,1 см, DC= 26,1 см
Пошаговое объяснение:
Воспользуемся теоремой о серединном перпендикуляре к отрезку:
"Любая точка, лежащая на серединном перпендикуляре к отрезку равноудалена от концов этого отрезка". Точка D лежит на серединном перпендикуляре к отрезку АВ и к отрезку ВС.
Следовательно, верны равенства: DB=DA=DC
Т.к. по условию, DB=26,1 см, то DA=DC=26,1 см
3 ответ:
9
Объяснение:
Три высоты пересекаются в одной точке. Т.к. две высоты пересекаются в одной точке, через эту точку проходит и третья высота, таким образом BN - высота р/б тр-ка потому что проходит через точку пересечения высот, т.к. AC - основание BN - не только высота но и медиана, значит n - середина AC, NC = 1/2 AC = 9
4Точка D равноудалена от всех сторон треугольника, то она является точкой пересечения биссектрис данного треугольника.
Против меньшего угла всегда расположена короткая сторона.
Найдем угол, под которым видна короткая сторона, используя данные углы
Сумма углов треугольника равна 180 градусам
Получаем, 180 - (106/2 + 52/2) = 101 градус
5 Решение:
Серединный перпендикуляр пересекает сторону ВС в т.К.
Рассмотрим треугольники :ВКД и ДКС-они прямоугольные.
1) ДК- общая,
2)ВК=КС- по условию,
3)УголВКД=углуДКС, отсюда следует,что треугольники: ВКД=ДКС-по признаку равенства треугольников( по двум сторонам и углу между ними).
Значит ВД=ДС=30(см.),
АД= АС-ДС=40-30=10(см.)
ответ: 10см.;30см.
там цифры немного не правильные