В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
maxon23
maxon23
07.01.2023 06:22 •  Геометрия

АВ - діаметр кола, ∠ В = 65°. Знайти: ∠ОСВ, ∠СОВ, ∠СОА,∠ А.

Показать ответ
Ответ:
psossl
psossl
04.03.2023 17:38
Расстояние от точки до прямой - длина перпендикуляра, опущенного из точки на прямую.
Отрезок FB перпендикулярен плоскости квадрата AВСD, значит перпендикулярен прямым АВ, ВС и BD, лежащим в плоскости. Так как отрезок FB пересекает их, то  расстояние до сторон АВ и ВС, а так же и до диагонали BD равно длине отрезка FB и равно 8 дм.

ВА⊥AD как стороны квадрата,
ВА - проекция наклонной FA на плоскость АВС, значит
FA⊥AD по теореме о трех перпендикулярах.
Значит, FA - расстояние от точки F до прямой AD.
Из ΔABF по теореме Пифагора:
FA = √(AB² + FB²) = √(16 + 64) = √80 = 4√5 (дм)

ВС⊥CD как стороны квадрата,
ВС - проекция наклонной FС на плоскость АВС, значит
FС⊥СD по теореме о трех перпендикулярах.
Значит, FС - расстояние от точки F до прямой СD.
ΔАBF = ΔCBF по двум катетам (АВ = ВС как стороны квадрата, BF - общая), тогда
FC = FA = 4√5 дм.

ВО⊥АС, так как диагонали квадрата перпендикулярны,
ВО - проекция FO на плоскость АВС, значит
FO⊥AC по теореме о трех перпендикулярах.
FO - расстояние от точки F до прямой АС.
ВО = BD/2 = 4√2/2 = 2√2 дм как диагональ квадрата,
Из ΔFBO по теореме Пифагора:
FO = √(FB² + BO²) = √(64 + 8) = √72 = 6√2 дм

d(F ; AB) = d(F ; BC) = d (F ; BD) = 8 дм
d(F ; AD) = d(F ; CD) = 4√5 дм
d(F ; AC) = 6√2 дм
0,0(0 оценок)
Ответ:
AmitJK
AmitJK
19.04.2022 15:06
1. Задача 1. решена пользователем
ХироХамаки Новичок
(решение в файле)

2. Условие задачи 2. неточное. Должно быть:
Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.

Проведем ВН⊥АС и ВО⊥α.
ВО - искомое расстояние.
ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах.
∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника.
АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника)
ΔАВН: по теореме Пифагора
             ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4
ΔВНО:  ВО = ВН · sin 60° = 4 · √3/2 = 2√3

3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда
∠АВО = ∠АСО = 60°.
ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит
АВ = АС = 6.

Много сделайте хоть что нибудь, желательно с чертежом 1) отрезок кс – перпендикуляр к плоскости треу
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота