В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История

АВСDА1В1С1Д1 – прямоугольный параллелепипед, где АВСD квадрат со стороной 3см, ВВ1 = 4 см. Найдите: длину диагонали А1С.

Показать ответ
Ответ:
vvvvNikavvv
vvvvNikavvv
29.12.2020 12:07

Трапеция ABCD вписана в окружность (AD II BC), AB=13, BC=7, периметр 50. Найти:   1. CD и AD  ;  2.среднюю линию трапеции  ;  3. Площадь трапеции  ;  4. tg∠BAD  ;   5.cos ∠BCD  ;  6.AC  ;  7.радиус вписанной окружности  ;  8.радиус описанной окружности.

Объяснение:

1) Описать окружность можно только около равнобедренной трапеции ⇒ CD=13 , Тогда AD=50-(2*13+7)=17.

2)Средняя линия равна полусумме оснований : \frac{AD+BC}{2} =\frac{7+17}{2} =12  .

3) S (трапеции) =1/2*h*(a+b)  .Отложим от точки D отрезок DK=BC. Тогда  S (трапеции) =S (ΔАВК) , т.к высоты этих фигур равны .

Пусть ВН⊥АD,  АН=  \frac{17-7}{2} = 5 . Из ΔАВН , по т. Пифагора

ВН=√(13²-5²)=  √( (13+5)(13-5))=√(18*8)=12 .

S (трапеции)=1/2*12*(17+7)=144 (ед²).

4) ΔАВН-прямоугольный, tg∠BAD= \frac{BH}{AH}  , tg∠BAD= \frac{12}{5}  , tg∠BAD=2,4 .

5) cos∠BCD= cos∠ABC, тк углы при основании равны.

cos∠ABC=cos(90°+∠АВН) =( по формулам приведения)=- sin∠ABН

Из ΔАВН,  sin∠ABН =\frac{AH}{AB}  , sin∠ABН =\frac{5}{13}  . Получаем  cos∠BCD=- \frac{5}{13}  .

6) ΔАВС , по т. косинусов АС²=АВ²+ВС²-2*АВ*ВС*cos∠ABC,

AC²=169+49-2*13*7*( - \frac{5}{13}  ) , AC²=218+70 ,  AC²=288 , AC=12√2.

7) Из формулы S=1/2*P*r , r=(2*S)/P . r=\frac{2*144 }{50}  ,  r =5,76

8) Радиус описанной окружности для трапеции совпадает с радиусом описанной окружности для ΔАВС. Найдем R для ΔАВC по т. синусов

\frac{AC}{sin ABC} =2R ,  \frac{AC}{sin ABC} =2R .

sin∠ABC=sin(90+∠ABH)=( по формулам приведения) =сos∠ABH.

ΔABH , сos∠ABH=\frac{BH}{AB}  , сos∠ABH=\frac{12}{13}  .Поэтому   sin∠ABC= \frac{12}{13}  .

2R = \frac{12\sqrt{2} }{ \frac{12}{13} }   , R=6,5√2 .


решить с пояснением, не только ответ Трапеция ABCD вписана в окружность (AD II BC), AB=13, BC=7, пер
0,0(0 оценок)
Ответ:
sddnblck
sddnblck
03.01.2023 10:29

Треугольник остроугольный => высоты пересекаются внутри треугольника.

Пусть угол BAK равен alfa, тогда из прямоугольного треугольника ABK: угол ABK = 90 - alfa

Пусть угол ABC равен beta, тогда из прямоугольного треугольника ABH: угол HAB = 90 - beta

Из рассмотрения треугольника ABM: сумма углов равна 180 градусов;

AMB + MAB + MBA = 180

105 + (90-alfa) + (90-beta) = 180

Отсюда alfa + beta = 105 (град)

Сумма углов треугольника ABC равна 180 градусов, тогда

угол ACB = 180 - (ABC+BAC) = 180 - (alfa+beta) = 180 - 105 = 75 (град)

Тогда угол AOB = 2 * ACB = 150 град (O — центр окружности; A, B, C лежат на ней)

Далее, треугольник ABO — равнобедренный (AO и BO — радиусы одной окружности) , поэтому углы при основании равны:

OAB = ABO = (1/2) * (180 - AOB) = (180-150)/2 = 15 (градусов) .

ОТВЕТ: угол ABO = 15 градусов.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота