Объяснение: если угол КЛМ=60°, то угол NLM=30°. Рассмотрим ∆ОLM. Он прямоугольный, где OM и OL- катеты, а LM-гипотенуза. Катет лежащий напротив угла 30° равен половине гипотенузы. Напротив него лежит катет МР=10дм, тогда гипотенуза LM=10×2=20дм. Мы нашли гипотенузу ∆OLM, и она же является стороной ромба. Теперь найдём периметр ромба. Периметр - это сумма всех его сторон, поэтому Р=20×4=80дм, а полупериметр=80÷2=40дм
Р/2=40дм
Радиус вписанной окружности в ромб=(а×sinL)/2=(20×sin60°)/2=
=20×√3/2÷2=10√3÷2=5√3дм
r=5√3дм- это я так нашла по другой формуле.
Можно найти высоту ромба, через его площадь по формуле h=S÷a, где S- площадь ромба, а "а" сторона ромба, а h - высота, проведённая к ней. высота будет в 2 раза больше радиуса: h=200√3÷20=10√3дм. Так как высота больше радиуса в 2 раза, то r=10√3÷2=5√3дм
Теперь найдём площадь вписанной окружности по формуле:
90°, 60°, 30°, 14 см., 7 см
Объяснение:
Рассмотрим ΔВАО. Пусть ∠ОВА=х°, ∠ВАО=2х°, ∠ВОА=3х°, тогда
х+2х+3х=180, т.к.сумма углов треугольника составляет 180°
6х=180; х=30.
∠ОВА=30°, ∠ВАО=2*30=60°, ∠ВОА=3*30=90°
Рассмотрим ΔСОD. ∠СОD=∠ВОА=90° как вертикальные
∠ОDС=∠ВАО=60° как внутренние накрест лежащие при а║в и секущей m
∠ОСD=∠АВО=30° как внутренние накрест лежащие при а║в и секущей m
ΔАВО=ΔСОD по стороне и двум прилежащим к ней углам, т.к. DO=АО по условию, значит СD=АВ=14 см.
ΔCOD - прямоугольный, ∠COD=90°, ∠OСD=30°, значит, OD=1/2 CD=7 см (по свойству катета, лежащего против угла 30°)
Объяснение: если угол КЛМ=60°, то угол NLM=30°. Рассмотрим ∆ОLM. Он прямоугольный, где OM и OL- катеты, а LM-гипотенуза. Катет лежащий напротив угла 30° равен половине гипотенузы. Напротив него лежит катет МР=10дм, тогда гипотенуза LM=10×2=20дм. Мы нашли гипотенузу ∆OLM, и она же является стороной ромба. Теперь найдём периметр ромба. Периметр - это сумма всех его сторон, поэтому Р=20×4=80дм, а полупериметр=80÷2=40дм
Р/2=40дм
Радиус вписанной окружности в ромб=(а×sinL)/2=(20×sin60°)/2=
=20×√3/2÷2=10√3÷2=5√3дм
r=5√3дм- это я так нашла по другой формуле.
Можно найти высоту ромба, через его площадь по формуле h=S÷a, где S- площадь ромба, а "а" сторона ромба, а h - высота, проведённая к ней. высота будет в 2 раза больше радиуса: h=200√3÷20=10√3дм. Так как высота больше радиуса в 2 раза, то r=10√3÷2=5√3дм
Теперь найдём площадь вписанной окружности по формуле:
S=πr²=3,14×(5√3)²=3,14×25×3=3,14×75=
=235,5дм²
ответ: Sвп.окр=235,5дм², р/2=40дм; r=5√3дм