∆ АВС вписанный, т.к. около него описана окружность. Радиусом этой описанной окружности, где О - центр, являются отрезки ОА и ОС.
Радиусу этой окружности равен радиус другой окружности, проходящей через точки А, С, О,
Следовательно, центр М этой второй окружности лежит на первой, отрезок МО – общий радиус для обеих окружностей.
МО=АО=МА -- четырехугольник АМСО - ромб, а треугольник МАО – равносторонний.⇒
Угол МАО=60°
Сумма углов параллелограмма, прилежащих к одной стороне, 180°.
Ромб - параллелограмм.
Тупой угол АОС ромба равен 180°-60°=120° и является центральным для окружности, описанной около ∆ АВС.
Вписанный угол В опирается на ту же дугу, что центральный АОС и равен его половине. Угол В=60°.
АСДК - трапеция, основания АС=12 см и ДК=4 см
АВ = 12-4 = 8 см
АК = 12+4 = 16 см
По Пифагору
ВК² = АК²-АВ² = 16²-8² = 256-64 = 3*64
ВК = 8√3 см
∠ВАК = arccos(АВ/АК) = arccos(1/2) = 60°
∠ВКА = 90 - ∠ВАК = 30°
∠ДКА = ∠ВКА + 90 = 120°
Полная площадь трапеции
S(ACDK) = 1/2(AC+DK)*BK = 1/2(12+4)*8√3 = 64√3 см²
Площадь сектора большого круга (серая штриховка)
S₁₂ = πR²/360*α = π*12²*60/360 = π*12*12/6 = 24π см²
Площадь сектора малого круга (зелёная штриховка)
S₄ = πR²/360*α = π*4²*120/360 = π*16/3 = 16π/3 см²
И площадь странной фигуры около касательной
S = S(ACDK) - S₁₂ - S₄ = 64√3 - 24π - 16π/3 см²
S = 64√3 - 88π/3 см²
∆ АВС вписанный, т.к. около него описана окружность. Радиусом этой описанной окружности, где О - центр, являются отрезки ОА и ОС.
Радиусу этой окружности равен радиус другой окружности, проходящей через точки А, С, О,
Следовательно, центр М этой второй окружности лежит на первой, отрезок МО – общий радиус для обеих окружностей.
МО=АО=МА -- четырехугольник АМСО - ромб, а треугольник МАО – равносторонний.⇒
Угол МАО=60°
Сумма углов параллелограмма, прилежащих к одной стороне, 180°.
Ромб - параллелограмм.
Тупой угол АОС ромба равен 180°-60°=120° и является центральным для окружности, описанной около ∆ АВС.
Вписанный угол В опирается на ту же дугу, что центральный АОС и равен его половине. Угол В=60°.
АСДК - трапеция, основания АС=12 см и ДК=4 см
АВ = 12-4 = 8 см
АК = 12+4 = 16 см
По Пифагору
ВК² = АК²-АВ² = 16²-8² = 256-64 = 3*64
ВК = 8√3 см
∠ВАК = arccos(АВ/АК) = arccos(1/2) = 60°
∠ВКА = 90 - ∠ВАК = 30°
∠ДКА = ∠ВКА + 90 = 120°
Полная площадь трапеции
S(ACDK) = 1/2(AC+DK)*BK = 1/2(12+4)*8√3 = 64√3 см²
Площадь сектора большого круга (серая штриховка)
S₁₂ = πR²/360*α = π*12²*60/360 = π*12*12/6 = 24π см²
Площадь сектора малого круга (зелёная штриховка)
S₄ = πR²/360*α = π*4²*120/360 = π*16/3 = 16π/3 см²
И площадь странной фигуры около касательной
S = S(ACDK) - S₁₂ - S₄ = 64√3 - 24π - 16π/3 см²
S = 64√3 - 88π/3 см²