Через концы отрезка AB, не пересекающего плоскость и точку C – середину этого отрезка, проведены параллельные прямые, пересекающие плоскость α в точках A1,B1,C1 соответственно. Найдите длину отрезка CC1,если AA1=12 см, а BB1=6 см.
Диагонали равны только у разновидностей параллелограмма : у прямоугольника и квадрата.
2) Катет прямоугольного треугольника, лежащий против угла 30°, равен половине гипотенузы. ВЕРНО
3) В прямоугольной трапеции ровно один прямой угол. НЕВЕРНО
Боковая сторона, которая образует прямой угол с одним основанием трапеции, является перпендикуляром к двум параллельным основаниям, значит, она образует прямой угол со вторым основанием тоже. Всего в прямоугольной трапеции 2 прямых угла. Если в трапеции будет 4 прямых угла, то это будет прямоугольник.
1) Диагонали параллелограмма равны. НЕВЕРНО
Диагонали равны только у разновидностей параллелограмма : у прямоугольника и квадрата.
2) Катет прямоугольного треугольника, лежащий против угла 30°, равен половине гипотенузы. ВЕРНО
3) В прямоугольной трапеции ровно один прямой угол. НЕВЕРНО
Боковая сторона, которая образует прямой угол с одним основанием трапеции, является перпендикуляром к двум параллельным основаниям, значит, она образует прямой угол со вторым основанием тоже. Всего в прямоугольной трапеции 2 прямых угла. Если в трапеции будет 4 прямых угла, то это будет прямоугольник.
4) Сумма углов четырёхугольника равна 360°. ВЕРНО
Радиус окружности вписанной в квадрат равна 3√2см. Найти сторону квадрата и радиус окружности, описанной около квадрата.
Объяснение:
1) Тк окружность вписана , то она касается всех сторон квадрата и диаметр окружности равен стороне квадрата : а₄=2r=2*3√2=6√2 (cм).
2) Если теперь около квадрата ABCD описать окружность, то диагональ квадрата AC равна диаметру окружности .
ΔАВС-прямоугольного , по т. Пифагора АС=√( (6√2)²+(6√2)²)=12 (см).
Поэтому радиус , описанной около квадрата , окружности R=12:2=6 (см).