Через точку m, удалённую от центра окружности на расстояние b, проведена секущая ma так, что она делится окружностью пополам mb = ba. определить длину секущей ma, если радиус окружности равен r.(если можете опишете каждое действие подробно, заранее )
ответ:ВН
Sбок = 3S(√3+1)/2.
Объяснение:
Sab1с = (1/2)·AC·B1H = S (дано). => В1Н = 2S/AC.
Угол между двумя пересекающимися плоскостями (двугранный угол) равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения.
Проведя высоты В1Н и ВН в треугольниках АВС и А1В1С1 соответственно (основания этих перпендикуляров совпадут по теореме о трех перпендикулярах) , получим прямоугольный треугольник В1НВ с углом ∠ВНВ1 = 60° (дано).
Из прямоугольного треугольника В1НН1 с углом Н1НВ1 = 30° (так как ∠Н1НВ=90°) имеем:
HH1 = B1H·Cos30 = (2S/AC)·(√3/2) = S√3/AC. - Это высота призмы.
Saa1c1c = AC·H1H = AC·S√3/AC = S√3 ед².
AB = (1/2)·AC (катет против угла 30° в треугольнике АВС.
Sabb1a1 = AB·H1H = (1/2)AC·S√3/AC = (S√3)/2 ед².
ВС = АС·Cos30 = АС·(√3/2) (из треугольника АВС).
Sbb1с1с = ВС·H1H = АС·(√3/2)·S√3/AC = (3S)/2 ед². Тогда
Sбок = Saa1c1c + Sabb1a1 + Sbb1с1с = S√3+(S√3)/2+(3S)/2.
Sбок = 3S(√3+1)/2.
1.Фигуры на плоскости
2 Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведенных через середины этих сторон.
3Рассмотрим ΔBAO и ΔOCD
AO=OC - по условию
BO=OD - по условию
∠AOB=∠COD - вертикальные
⇒ ΔBAO=ΔOCD - по первому признаку (2 стороны и угол между ними)
Билет №2.
1. геометрическая фигура, образованная двумя лучами (сторонами угла), выходящими из одной точки (которая называется вершиной угла)Это угол равный 180..Любой угол разделяет плоскость на 2 части. Если угол неразвёрнутый, то одна из частей называется внутренней, а другая внешней областью этого угла.Если угол развёрнутый, то любую из двух частей, на которые она разделяет плоскость можно считать внутренней областью угла.
Фигуру, состоящую из угла и его внутренней области, так же называют углом.От любой полупрямой в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180°,и только один.
2. Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею дуги пополам.
3.т. к. Сумма углов треугольника 180°,
значит третий угол 180-32-57=91°
Билет №3.
1.Равносторонним треугольником называется треугольник, у которого все его стороны равны.1) Все углы равностороннего треугольника равны по 60º.2) Высота, медиана и биссектриса, проведённые к каждой из сторон равностороннего треугольника, совпадают,3)Точка пересечения высот, биссектрис и медиан называется центром правильного треугольника и является центром вписанной и описанной окружностей (то есть в равностороннем треугольнике центры вписанной и описанной окружностей совпадают).4) Точка пересечения высот, биссектрис и медиан правильного треугольника делит каждую из них в отношении 2:1, считая от вершин.6) Расстояние от точки пересечения высот, биссектрис и медиан до любой стороны треугольника равно радиусу вписанной окружности.7) Сумма радиусов вписанной и описанной окружностей правильного треугольника равна его высоте, медиане и биссектрисе.8) Радиус вписанной в правильный треугольник окружности в два раза меньше радиуса описанной окружности.
2.Если из какой-нибудь точки провести две касательные к окружности, то их отрезки от данной точки до точек касания равны между собой и центр окружности находится на биссектрисе угла, образованного этими касательными.
3. Возьмем отрезок АД за х, тогда ОА = х+8: х+х+8=24. 2х=16, х=8