через вершину С трикутника АВС проведено пряму КР паралельну прямій АВ Величини кутів ВСК, ВСА і АСР відносяться як 3:7:2 . Знайдіть кути трикутника АВС.
АВ=СД ВС=АД АВ II СД ВСII АД (свойства параллелограмма - противоположные стороны равны и параллельны)
угол В=уголД угол А=угол С (св-во противоположные углы равны)
ВЕ -биссектриса угла В (делит угол пополам) угол АВЕ=уголЕВС
АЕ=8 ЕД=2
Найти Р авсд
Решение
Рассмотрим треугольник АВЕ угол АЕВ=угол ЕВС - как внутренние накрест лежащие углы при параллельных прямых ВС и АД . Треугольник АВЕ равнобедренный (углы при основании равны). Следовательно равны и боковые стороны АВ=АЕ=8 см АД=АЕ+ЕД=8+2=10 см
Дано АВСД - параллелограмм
АВ=СД ВС=АД АВ II СД ВСII АД (свойства параллелограмма - противоположные стороны равны и параллельны)
угол В=уголД угол А=угол С (св-во противоположные углы равны)
ВЕ -биссектриса угла В (делит угол пополам) угол АВЕ=уголЕВС
АЕ=8 ЕД=2
Найти Р авсд
Решение
Рассмотрим треугольник АВЕ угол АЕВ=угол ЕВС - как внутренние накрест лежащие углы при параллельных прямых ВС и АД . Треугольник АВЕ равнобедренный (углы при основании равны). Следовательно равны и боковые стороны АВ=АЕ=8 см АД=АЕ+ЕД=8+2=10 см
Р=АВ+ВС+СД+АД=8+10+8+10=36
ответ Р=36 см
АВ = ВС = АС = 4; ∠А = ∠В = ∠С =60°.
Объяснение:
По теореме синусов найдём ∠АВМ.
АМ : sin ∠АВМ = 2√3 : sin 60°
(4:2) : sin ∠АВМ = 2√3 : √3/2
sin ∠АВМ = 1/2,
следовательно, ∠АВМ = 30°.
В Δ АВМ ∠АМВ = 180 - 60 - 30 = 90 °; следовательно треугольник АВМ является прямоугольным, а катет АМ, лежащий против угла 30°, равен 1/2 АВ, откуда АВ = 2 · 2 = 4.
По теореме Пифагора находим ВС = 4
ВС = √(2² + (2√3)² = √16 = 4.
В равностороннем треугольнике все углы равны 60°.
ответ: АВ = ВС = АС = 4; ∠А = ∠В = ∠С =60°.