При пересечении двух прямых образовались вертикальные углы (стороны одного угла являются продолжениями сторон другого угла), это ∡AOD и ∡BOC, ∡BOD и ∡AOC. Вертикальные углы равны => ∡AOD = ∡BOC, ∡BOD = ∡AOC.
Также образовались смежные углы (два угла, у которых одна сторона общая, а две другие дополняют друг друга до прямой), это ∡AOD и ∡BOD, ∡BOD и ∡BOC, ∡BOC и ∡AOC, ∡AOC и ∡AOD. Сумма смежных углов равна 180°.
По условию задачи, углы, которые нужно найти, не могут быть вертикальными (по условию углы не равны), значит это пара смежных углов.
Допустим, что ∡AOD на 20° меньше ∡AOC => ∡AOD = ∡AOC – 20°.
Периметр прямоугольника равен удвоенной сумме двух его смежных сторон. P = 2(AB+BC),
BC = BK + KC = 8 см + 5 см = 13 см.
AK — биссектрисса угла A, угол BAK = угол KAD = 90°÷2 = 45°,
Рассмотрим треугольник ABK. Сумма углов треугольника равна 180°. угол BKA = 180° – угол ABK – угол BAK = 180° – 90° – 45° = 45°, угол BKA = угол BAK, углы при основании равны, треугольник — равнобедренный, значит боковые стороны равны, AB = BK = 8см.
P = 2(AB + BC) = 2(8см + 13см) = 2 × 21 см = 42 см.
ответ: 42 см
При пересечении двух прямых образовались вертикальные углы (стороны одного угла являются продолжениями сторон другого угла), это ∡AOD и ∡BOC, ∡BOD и ∡AOC. Вертикальные углы равны => ∡AOD = ∡BOC, ∡BOD = ∡AOC.
Также образовались смежные углы (два угла, у которых одна сторона общая, а две другие дополняют друг друга до прямой), это ∡AOD и ∡BOD, ∡BOD и ∡BOC, ∡BOC и ∡AOC, ∡AOC и ∡AOD. Сумма смежных углов равна 180°.
По условию задачи, углы, которые нужно найти, не могут быть вертикальными (по условию углы не равны), значит это пара смежных углов.
Допустим, что ∡AOD на 20° меньше ∡AOC => ∡AOD = ∡AOC – 20°.
∡AOD + ∡AOC = 180°,
∡AOC – 20° + ∡AOC = 180°,
2 × ∡AOC = 200°,
∡AOC = 200° ÷ 2 = 100°;
∡AOD = ∡AOC – 20° = 100° – 20° = 80°
ответ: 100° и 80°