Дан правильный многоугольник и длина радиуса r окружности описанной около многоугольника. определи площадь многоугольника, если: - у многоугольника 12 сторон и r=4 см (если корня в ответе нет, под знаком корня пиши 1) s= ⋅ −−−−−√см2 - у многоугольника 10 сторон и r=4 см (ответ округли до целых) s= см2
Для ответа на вопрос задачи нужно знать высоту призмы. Найдем по т. косинусов диагональ основания АС.
Сумма углов при одной стороне параллелограмма равна 180°
Следовательно, угол АВС=180°-30°=150°
Пусть АВ=4см
ВС=4√3 см
АС²=АВ²+ ВС² -2*АВ*ВС* cos (150°)
косинус тупого угла - число отрицательное.
АС²=16+48+32√3*(√3):2=112
АС=√112=4√7
Высота призмы
СС1=АС: ctg(60°)=(4√7):1/√3
CC1=4√21
Площадь боковой поверхности данной призмы
S=H*P=4√21*2(4+4√3)=32√21*(1+√3) см²
КЕ - диаметр, значит дуга КРЕ=180°. Дуга КРЕ - это сумма дуг КР и РЕ, причем дуга РЕ=0,8*КР (дано). Тогда КР+РЕ=1,8*КР=180°. Отсюда КР=100°, а РЕ=80°. Вписанный угол КЕМ равен половине градусной меры дуги МК, на которую он опирается, то есть <KЕM=13°. Вписанный угол ЕМР, опирающийся на дугу РЕ, равен 40°. Тогда в треугольнике НМЕ (Н - точка пересечения хорды и диаметра), угол МНЕ (искомый угол) равен 180°-13°-40°=127°.
ответ: 127°