В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
sandrokapanadze777
sandrokapanadze777
15.04.2020 00:56 •  Геометрия

Дан равнобедренный треугольник авс с основанием ас. вписанная в него окружность с центром о касается боковой стороны вс в точке р и пересекает биссектрису угла в в точке q. докажите, что отрезки qp и ос параллельны.

Показать ответ
Ответ:
castafirs
castafirs
17.08.2020 08:17

ВН - биссектриса равнобедренного треугольника, проведенная к основанию, значит ВН - высота.

ОР⊥ВС как радиус, проведенный в точку касания.

ΔOPQ равнобедренный (OP = OQ как радиусы), значит

∠OPQ =  ∠OQP = α

∠POH = ∠OPQ +  ∠OQP = 2α как внешний угол треугольника OPQ.

ΔСОН = ΔСОР по катету и гипотенузе (∠СНО = ∠СРО = 90°, ОН = ОР как радиусы, ОС - общая), значит

∠СОР = ∠СОН = 1/2 ∠РОН = α.

Итак, ∠OPQ = ∠COP = α, а эти углы - внутренние накрест лежащие при пересечении прямых QP и ОС секущей ОР, значит

QP ║ OC.


Дан равнобедренный треугольник авс с основанием ас. вписанная в него окружность с центром о касается
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота