Дан равнобедренный треугольник. Средняя линия треугольника, параллельная основанию, равна 7а. Найди стороны треугольника, зная, что его периметр равен 26а.
если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой. Доказательство: пусть а 1 и а 2 - две параллельные прямые и a - плоскость, перпендикулярная прямой а 1 . lib.com.ru/Exact Science/ma_a1.htm
Свойство перпендикулярной прямой и плоскости
Пусть a1 и a2 – две параллельные прямые и α - плоскость, перпендикулярная прямой a1. Докажем, что эта плоскость перпендикулярна и прямой a2. Проведем через точку A2 пересечения прямой a2 с плоскостью α произвольную прямую...
1) Один из углов выпуклого четырехугольника равен 60 градусам, второй и третий относятся как 7:3, а четвертый равен полусумме второго и третьего. Найдите неизвестные углы четырехугольника.
60°+15х = 360° => х = 20°
ответ: 140°, 60°, 100°.
2)В выпуклом многоугольнике 77 диагоналей. Найдите количество его сторон и сумму углов.
Формула числа диагоналей d = (n²-3n)/2.
n² - 3n -154 = 0 => n = (3+√(9+616)/2 = 14.
Формула суммы углов выпуклого многоугольника 180(n-2)
lib.com.ru/Exact Science/ma_a1.htm
Свойство перпендикулярной прямой и плоскости
Пусть a1 и a2 – две параллельные прямые и α - плоскость, перпендикулярная прямой a1. Докажем, что эта плоскость перпендикулярна и прямой a2. Проведем через точку A2 пересечения прямой a2 с плоскостью α произвольную прямую...
1). Неизвестные углы 140°, 100°. 2). 14 сторон, Сумма углов 2160°.
Объяснение:
1) Один из углов выпуклого четырехугольника равен 60 градусам, второй и третий относятся как 7:3, а четвертый равен полусумме второго и третьего. Найдите неизвестные углы четырехугольника.
60°+15х = 360° => х = 20°
ответ: 140°, 60°, 100°.
2)В выпуклом многоугольнике 77 диагоналей. Найдите количество его сторон и сумму углов.
Формула числа диагоналей d = (n²-3n)/2.
n² - 3n -154 = 0 => n = (3+√(9+616)/2 = 14.
Формула суммы углов выпуклого многоугольника 180(n-2)
180(14-2) = 2160°.
ответ: 14 сторон, 2160°.