Удаленное решение пользователя TwilightStar2016 верное, за исключением досадной описки в конце. Вот оно: Решение. 1)MN-касат. OE-r-следовательно <MEK=90º=>KE-высота, медиана, биссектриса. КЕ-медиана=>МЕ=ЕN=20:2=10 2)OD-r MK-касат=><KDO=90º 3)Рассмотрим треу. MEK и DOK. <MEK-общий, <KDO=<MEK=>треу. MEK ~ DOK.(по двум углам) 4)MN и MK-касат.,MD-10=>ME=MD (по двум касат.) DK=MK-MD=26-10=16см. 5) треу. MKE-прямоуг. MK^2=ME^2+EK^2(теорема Пифагора. ) EK=корень ME^2-MK^2=корень из 676-100=корень из 576=24. 6)Отношение. 10/OD=24/16=26/OK 24/16=26/OK 24×OK=16×26 24OK=416 OK=416:21 OK=17целых1/3 OE=EK-OK=24-17целых1/3=6целых2/3 (а не 6и1/3, как было в ответе). Можно было решить так: По формуле радиуса вписанной в треугольник окружности: r=S/p, где S - площадь, а "р" - полупериметр треугольника. У нас р=(26+26+20):2 = 36. S=√[p(p-a)((p-b)(p-c)] - формула Герона. S=√(36*18*18*16)=240. r=240/36=6и2/3. ответ: r=6и2/3.
1) треугольником называется фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки.
2) 2 треугольника называются равными, если
- у них равны 2 стороны и угол между ними
- у них равны 1 сторона и прилегающие к ним 2 угла
- у них равны 3 стороны
3) медианой треугольника называется отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
4) высотой треугольника называется перпендикуляр, опущенный из вершины треугольника на прямую, которая содержит его противоположную сторону.
5) биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника.
6) равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине.
7) свойства равнобедренного треугольника.
в равнобедренном треугольнике углы при основании равны.в равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.если в треугольнике два угла равны, то он равнобедренный.если в треугольнике медиана является и высотой, то такой треугольник равнобедренный.если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.
8) треугольник, у которого все стороны равны, называется равносторонним или правильным.
9) свойства равностороннего треугольника.
все стороны равны; углы каждого равностороннего треугольника равны 60°; каждая высота также является медианой и биссектрисой и они равны между собой; каждая медиана является также высотой и биссектрисой; каждая биссектриса является высотой и медианой; точка пересечения высот, биссектрис и медиан разделяется в отношении 2: 1; площадь равностороннего треугольника: высоты, медианы и биссектрисы равностороннего треугольника равны: радиус описанной окружности
10) i признак (по двум сторонам и углу между ними). если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
11)ii признак (по стороне и прилежащим углам) если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.
12)iii признак (по трем сторонам). если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.
Решение.
1)MN-касат.
OE-r-следовательно <MEK=90º=>KE-высота, медиана, биссектриса.
КЕ-медиана=>МЕ=ЕN=20:2=10
2)OD-r
MK-касат=><KDO=90º
3)Рассмотрим треу. MEK и DOK.
<MEK-общий, <KDO=<MEK=>треу. MEK ~ DOK.(по двум углам)
4)MN и MK-касат.,MD-10=>ME=MD (по двум касат.)
DK=MK-MD=26-10=16см.
5) треу. MKE-прямоуг.
MK^2=ME^2+EK^2(теорема Пифагора. )
EK=корень ME^2-MK^2=корень из 676-100=корень из 576=24.
6)Отношение.
10/OD=24/16=26/OK
24/16=26/OK
24×OK=16×26
24OK=416
OK=416:21
OK=17целых1/3
OE=EK-OK=24-17целых1/3=6целых2/3 (а не 6и1/3, как было в ответе).
Можно было решить так:
По формуле радиуса вписанной в треугольник окружности:
r=S/p, где S - площадь, а "р" - полупериметр треугольника.
У нас р=(26+26+20):2 = 36.
S=√[p(p-a)((p-b)(p-c)] - формула Герона.
S=√(36*18*18*16)=240.
r=240/36=6и2/3.
ответ: r=6и2/3.
ответ:
1) треугольником называется фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки.
2) 2 треугольника называются равными, если
- у них равны 2 стороны и угол между ними
- у них равны 1 сторона и прилегающие к ним 2 угла
- у них равны 3 стороны
3) медианой треугольника называется отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
4) высотой треугольника называется перпендикуляр, опущенный из вершины треугольника на прямую, которая содержит его противоположную сторону.
5) биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника.
6) равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине.
7) свойства равнобедренного треугольника.
в равнобедренном треугольнике углы при основании равны.в равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.если в треугольнике два угла равны, то он равнобедренный.если в треугольнике медиана является и высотой, то такой треугольник равнобедренный.если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.8) треугольник, у которого все стороны равны, называется равносторонним или правильным.
9) свойства равностороннего треугольника.
все стороны равны; углы каждого равностороннего треугольника равны 60°; каждая высота также является медианой и биссектрисой и они равны между собой; каждая медиана является также высотой и биссектрисой; каждая биссектриса является высотой и медианой; точка пересечения высот, биссектрис и медиан разделяется в отношении 2: 1; площадь равностороннего треугольника: высоты, медианы и биссектрисы равностороннего треугольника равны: радиус описанной окружности10) i признак (по двум сторонам и углу между ними). если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
11)ii признак (по стороне и прилежащим углам) если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.
12)iii признак (по трем сторонам). если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.