В правильной пирамиде все боковые рёбра равны, все боковые грани - равные равнобедренные тр-ки. Высота боковой грани называется апофемой правильной пирамиды. Следовательно, имеем боковую грань(равнобедр. тр-к с основанием=12 и высотой(апофемой)=15 см Высота равнобедр. тр-ка делит основание пополам и образует прямоуг. тр-к со стороной основания и бок. ребром пирамиды. Тогда по Пифагору: Бок. ребро=корень кв. из (6^2+15^2)=корень кв. из 2612.Проведем SO — высоту пирамиды и перпендикуляры SK, SM и SN к соответствующим сторонам ΔАВС. Тогда по теореме о трех перпендикулярах OK ⊥ ВС, ОМ ⊥ АС и ON ⊥ AB. Так что ∠SKO = ∠SMO = ∠SNO = 60° — линейные углы данных двугранных углов. Значит, треугольники SKO, SMO и SNO равны по катету и острому углу. Тогда OM = OK = ON, то есть точка О является центром окружности, вписанной в основание. В прямоугольном ΔAВС:
1. Рассмотрим треуг. ВКО: он прямоугольный, известен катет ОК - 4√3; гипотенуза ОВ = 1/2 ВД = 4: находим катет КВ по теореме Пифагора = 4. 2. Получается, что катет КВ = 1/2 гипотенузы ОВ. Из этого следует, что угол КОВ = 30 градусов (по теореме) . 3. Рассмотрим треуг. АКО: он прямоугольный, из п. 2 следует, что угол КАО равен также 30 градусам. Катет КО напротив этого угла известен, значит гипотенуза АО = 2КО = 8√3. По теореме Пифагора находим АК = 12. 4. Находим сторону ромба: КВ + АК = 4+12 = 16 см. 5. Найдём вторую диагональ ромба: она равна 2АО = 16√3 см.
Следовательно, имеем боковую грань(равнобедр. тр-к с основанием=12 и высотой(апофемой)=15 см Высота равнобедр. тр-ка делит основание пополам и образует прямоуг. тр-к со стороной основания и бок. ребром пирамиды. Тогда по Пифагору:
Бок. ребро=корень кв. из (6^2+15^2)=корень кв. из 2612.Проведем SO — высоту пирамиды и перпендикуляры SK, SM и SN к соответствующим сторонам ΔАВС. Тогда по теореме о трех перпендикулярах OK ⊥ ВС, ОМ ⊥ АС и ON ⊥ AB. Так что ∠SKO = ∠SMO = ∠SNO = 60° — линейные углы данных двугранных углов. Значит, треугольники SKO, SMO и SNO равны по катету и острому углу. Тогда OM = OK = ON, то есть точка О является центром окружности, вписанной в основание. В прямоугольном ΔAВС:
1. Рассмотрим треуг. ВКО: он прямоугольный, известен катет ОК - 4√3; гипотенуза ОВ = 1/2 ВД = 4: находим катет КВ по теореме Пифагора = 4.
2. Получается, что катет КВ = 1/2 гипотенузы ОВ. Из этого следует, что угол КОВ = 30 градусов (по теореме) .
3. Рассмотрим треуг. АКО: он прямоугольный, из п. 2 следует, что угол КАО равен также 30 градусам. Катет КО напротив этого угла известен, значит гипотенуза АО = 2КО = 8√3. По теореме Пифагора находим АК = 12.
4. Находим сторону ромба: КВ + АК = 4+12 = 16 см.
5. Найдём вторую диагональ ромба: она равна 2АО = 16√3 см.