Площадь треугольника, отсекаемого средней линией, равна четверти площади исходного треугольника*. S(NPB)=40/4=10. Треугольники NPB и NPC имеют общую высоту (опущенную из N на BC) и равные основания (BP=PC), следовательно их площади равны. S(NPC)=S(NPB)=10.
---------------------------------------------------- *) Средняя линия равна половине основания. Средняя линия делит высоту (и любой отрезок, соединяющий противолежащую вершину и точку на параллельном основании) пополам. Произведение половины основания и половины высоты дает вчетверо меньшую площадь.
C`B=8; CC`=16
Решение.
Из ΔС`CB
sin ∠BCC`=BC`/CC`=8/16=1/2 ⇒∠BCC`=30°
∠С`CB=∠C`CA=30° (СС`- биссектриса и делит угол С пополам)
∠С=60°
Cумма острых углов прямоугольного треугольника равна 90° ⇒∠ВАС=90°-60°=30°
Сумма смежных углов равна 180°
∠DAC=180°-30°=150°
2)Дано: Δ АВС; ∠C=90°; BC=10; CD⊥AB; BD=5
Решение.
ΔBDC-прямоугольный, cos∠CBD=BD/BC=5/10=1/2
∠CBD=60°
Cумма острых углов прямоугольного треугольника равна 90° ⇒∠ВАС=90°-60°=30°
В прямоугольном треугольнике катет против угла в 30° равен половине гипотенузы, значит гипотенуза в два раза больше катета ВС.
АВ=20
AD=AB-DB=20-5=15
3) Дано: Δ ACD, AC=DC=4; CF⊥AD; ∠DCF=30°; FB⊥AC
Решение.
CF- высота, медиана и биссектриса Δ ACD
∠DCF=∠ACF=30° ⇒ ∠ACD=60°
ΔACD- равнобедренный ( AС=СD=4 по условию)
значит углы при основании (180°-60°)/2=120°/2=60°
ΔACD- равносторонний
AC=CD=AD=4
AF=FD=2 ( CF - медиана)
В прямоугольном треугольнике АВF
∠ВАF=60°, значит ∠BFA=30° ( cумма острых углов прямоугольного треугольника равна 90°)
В прямоугольном треугольнике катет против угла в 30° равен половине гипотенузы, значит ВF=AF/2=1.
4) Дано: Δ ABC, ∠C=90°; М- середина АВ ⇒АМ=ВМ; ∠CMD=∠DMA;
∠САВ=30°
Решение.
Cередина гипотенузы- центр окружности, описанной около прямоугольного треугольника.
Поэтому МА=МВ=МС=R
МС=МА ⇒ ΔМСА - равнобедренный ⇒ биссектриса MD - высота и медиана ⇒ MD⊥AC
BC║MD
MD- средняя линия треугольника АВС
MD=BC/2=4/2=2
----------------------------------------------------
*) Средняя линия равна половине основания. Средняя линия делит высоту (и любой отрезок, соединяющий противолежащую вершину и точку на параллельном основании) пополам. Произведение половины основания и половины высоты дает вчетверо меньшую площадь.