Выразим заданныеточки через координаты А, В и С: К = ((Ах+Вх)/2; (Ау+Ву)/2) = (3; -2) Л = ((Ах+Сх)/2; (Ау+Су)/2) = (2; 5) М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1)
запишем систему 2-ух уравнений по х и по у: {(Вх+Сх+ Ах+Сх+ Ах+Вх+)/2 = 3 + 2 +(-2) =3 {(Ву+Су + Ау+Су +Ау+Ву)/2 = (-2)+5+1 =4
{Вх+Сх+Ах = 3 {Ву+Су+Ау = 4
возвращаемся к координатам точки М и видим: М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1) откуда находим Вх+Сх = -2*2 = -4 и Ву+Су = 1*2 = 2
подставляем в нашу систему {-4+Ах = 3 {2+Ау = 4 и находим Ах = 7; Ау = 2 А(7;2)
В задании, очевидно, надо определить ПЛОЩАДЬ закрашенной фигуры.
Она представляет собой разность сегментов двух заданных кругов.
Радиусы их равны:
АВ = √((-1)² + (-1)²) = √2,
АС = √(4² + 2²) = √20.
Площадь сегмента круга находится, как разность площади сектора AOB и площади равнобедренного треугольника AOB, выраженную через угол.
Sсегм = (R² /2)(πα° /180° −sin(α°)).
Находим координаты точек пересечения окружностей с заданной прямой решением систем из уравнения окружности и прямой.
Точка Е: x² + y² = 20, 3x - 5y - 2 = 0. E(-62/17; -44/17).
Точка D: x² + y² = 2, 3x - 5y - 2 = 0. D(23/17; 7/17).
Площади сегментов равны:
Площадь Площадь
28.3511 2.1810
ответ: S = 28.3511 - 2.1810 = 26,1701 .
К = ((Ах+Вх)/2; (Ау+Ву)/2) = (3; -2)
Л = ((Ах+Сх)/2; (Ау+Су)/2) = (2; 5)
М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1)
запишем систему 2-ух уравнений по х и по у:
{(Вх+Сх+ Ах+Сх+ Ах+Вх+)/2 = 3 + 2 +(-2) =3
{(Ву+Су + Ау+Су +Ау+Ву)/2 = (-2)+5+1 =4
{Вх+Сх+Ах = 3
{Ву+Су+Ау = 4
возвращаемся к координатам точки М и видим: М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1)
откуда находим
Вх+Сх = -2*2 = -4 и Ву+Су = 1*2 = 2
подставляем в нашу систему
{-4+Ах = 3
{2+Ау = 4
и находим Ах = 7; Ау = 2
А(7;2)