Если в равнобедренной трапеции АВСД диагонали пересекаются под прямым углом, то угол между диагональю и основанием равен 45 градусов. Обозначим боковую сторону за х. Опустим из вершины С верхнего основания трапеции перпендикуляр на нижнее основание, тогда проекция диагонали на основание равно 10 см. Перенесём верхнее основание "в" в точку Д. Получим равнобедренный треугольник с основанием, равным а + в, а так как боковые стороны - это диагонали, то сумма их проекций равна 20 см. То есть а + в = 20 см. Тогда 2х = 48-20 = 28 см, а х = 28/2 = 14 см.
Обозначим боковую сторону за х.
Опустим из вершины С верхнего основания трапеции перпендикуляр на нижнее основание, тогда проекция диагонали на основание равно 10 см.
Перенесём верхнее основание "в" в точку Д.
Получим равнобедренный треугольник с основанием, равным а + в, а так как боковые стороны - это диагонали, то сумма их проекций равна 20 см.
То есть а + в = 20 см.
Тогда 2х = 48-20 = 28 см, а х = 28/2 = 14 см.
1) AD не параллельна BC, они пересекаются в точке E.
M - точка пересечения биссектрис внешних углов △AEB =>
M лежит на биссектрисе ∠E.
N - точка пересечения биссектрис △CDE =>
N лежит на биссектрисе ∠E.
Если MN перпендикулярна AB, то в △AEB совпадают биссектриса и высота.
Тогда △AEB - равнобедренный, углы при основании равны.
Углы A и B четырехугольника равны как смежные с равными.
2) AD параллельна BC, трапеция.
Биссектрисы внутренних углов при параллельных пересекаются под прямым углом.
Пусть E - середина AB.
ME - медиана из прямого угла, ME=AB/2
△BEM - равнобедренный, ∠EMB=∠EBM=∠CBM
ME||BC (по накрест лежащим) => M лежит на средней линии трапеции.
Аналогично N.
Если средняя линия перпендикулярна боковой стороне, то трапеция прямоугольная, ∠A=∠B=90.