В тр.АDC и СBDуг.DCB=уг.CAB т.к.градусная мера дуги CB равна половине уг.DCB и на эту же дугу опирается вписанный угол CAB,который тоже равен половине градусной меры дуги,на которую опирается)уг.CDB-общий для обоих треугольников,значит по признаку подобия тр. ADC и CBD подобны.Значит,по определению подобных треугольников:CD/BD=AC/BC=AD/CDAC/BC=AM/MB=10/18(по свойству биссектрисы)AD=CD*10/18BD=CD*18/10 AD+28=CD*18/10CD*10/18+28=CD*18/1028=CD*18/10-CD*10/1828=(18*18*CD-10*10*CD)/18028*180=CD(324-100)CD=28*180/224=180/8=22,5CD=22,5
2) d₁=3k , d₂ =4k .
(3k/2)² +(4k/2 )² = 10² ⇒ 25k²/4 =100 ⇒ k =4 ( k = - 4 не решение задачи)
d₁=3k =12;
d₂ =4k =16.
3)
BE/EC=3/1 ; ΔABE равнобедренный т.к. <BEA =< EAD =<EAB .
AB =BE =3k ;EC=k; BC=BE+EC=4k;
p =2(AB+BC)=2(k+4k) =10k.
Из ΔABC
AB² +BC² =AC² ⇔ (3k)² +(4k)² =50² ⇒(5k)² =(50)² ⇒ 5k=50 ⇒k =10 .
p =10k =10*10 =100 (см).
4) AB = 3k , BC =4k .
AB² +BC² =AC² (теорема Пифагора)
(3k)² +(4k)² =25² ⇒25k² =25² ⇒(5k)² =(25)² ⇒5k=25 ⇒ k=5 ;
AB = 5*3 =15 ;
BC= 5*4 =20 ;
AC= 5*5 =25 ;
3,4,5 (Пифагорово тройка) вообще (3k, 4k,5k ; k∈N)