Внешний угол при вершине треугольника равен сумме внутренних углов треугольника, не смежных с ним. рассмотрим треугольник abc. угол свн - внешний угол при вершине, противоположной основанию. вм- биссектриса этого угла. она делит угол на два равных угла 1 и 2. так как внешний угол при в равен сумме внутренних углов а и с, а треугольник авс равнобедренный и углы при его основании равны между собой, все выделенные углы также равны между собой. углы под номером 1 -равные соответственные при прямых ас и вми секущей авуглы под номером 2 - равные накрестлежащие при прямых ас и вми секущей всесли при пересечении двух прямых третьей внутренние накрестлежащие углы равны, то прямые параллельны.
Катеты есть среднее геометрическое (среднее пропорциональное) между гипотенузой и своей проекцией на гипотенузу. АВС прямоугольный треугольник; АВ (а), АС (b) катеты; ВС (с) гипотенуза; АК - высота; ВК проекция катета АВ на гипотенузу: ВК=10-3,6=6,4 см; СК - проекция катета АС на гипотенузу: СК=3,6 см; а^2=ВС*ВК; а=√6,4*10=8 см; b^2=ВС*СК; b=√10*3,6=6 см; r=(a+b-c)/2; r=(8+6-10)/2=2 см; r можно вычислить по другой формуле. r=S/p радиус вписанной окружности в произвольный треугольник; (эту формулу нужно знать обязательно); S для прямоугольного треугольника S=a*b/2 половина произведения катетов; р полуперимтр; р=Р/2 ( Р периметр); P=a+b+c (a, b катеты; с гипотенуза); S=ab/2 : P/2=ab/2 * 2/P=ab/(a+b+c); S=8*6/(8+6+10)=48/24=2; ответ: 2