даны два треугольника стороны первого прлшу дам 30. даны два треугольника стороны первого треугольника равны AB=2, BC=4 и AC=5, стороны вторго треугольнтка равны PQ =6, QR=12и PR=15.доказать что эти два треугольника подобны. НАРИСУЙТЕ ЧЕРТЕЖ, И ВСЕ
Пирамида правильная, следовательно, вершина S проецируется в центр О основания (квадрата АВСD), а все углы, образованные боковыми гранями с плоскостью основания, равны. Это двугранные углы, измеряемые линейным углом, получаемым при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям). В нашем случае это угол SHO, образованный пересечением плоскостей основания и боковой грани плоскостью SOH, перпендикулярной основанию и боковому ребру (то есть перпендикулярной ребру АВ).
Тогда из прямоугольного треугольника SOH имеем:
SO = SH*Sinα = L*Sinα (высота пирамиды), а НО = L*Соsα.
Заметим, что НО - это половина стороны основания. Сторона равна 2*L*Соsα.
Решение обеих задач основано на том, что у вписанного 4-угольника суммы противоположных углов равны 180°. Кроме того, вписанный угол, опирающийся на диаметр, равен 90°.
1. ∠BAD=∠BCD=90° как опирающиеся на диаметр. ∠ADC= 180-100=80°
2. ∠ABC=∠ADC=90° как опирающиеся на диаметр. 90°=∠ABC=2∠BDC⇒∠BDC=45°⇒∠ADC=90°-45°=45° Про углы∠BAD и ∠BCD ничего сказать нельзя. Чтобы понять это, проводим диаметр AC, рисуем равнобедренный прямоугольный треугольник ABC (B оказывается на окружности), после чего произвольным образом выбираем точку D на окружности по другую сторону от диаметра.
Пирамида правильная, следовательно, вершина S проецируется в центр О основания (квадрата АВСD), а все углы, образованные боковыми гранями с плоскостью основания, равны. Это двугранные углы, измеряемые линейным углом, получаемым при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям). В нашем случае это угол SHO, образованный пересечением плоскостей основания и боковой грани плоскостью SOH, перпендикулярной основанию и боковому ребру (то есть перпендикулярной ребру АВ).
Тогда из прямоугольного треугольника SOH имеем:
SO = SH*Sinα = L*Sinα (высота пирамиды), а НО = L*Соsα.
Заметим, что НО - это половина стороны основания. Сторона равна 2*L*Соsα.
Тогда площадь основания So = 4*L²*Соs²α.
Объем пирамиды равен (1/3)*So*SO = (1/3)*4*L²*Соs²α*L*Sinα.
V = (4/3)*L³*Соs²α*Sinα = (2/3)*L³*Соsα*Sin2α (так как
2Sinα*Cosα = Sin2α).
ответ: V = (2/3)*L³*Соsα*Sin2α.
1. ∠BAD=∠BCD=90° как опирающиеся на диаметр.
∠ADC= 180-100=80°
2. ∠ABC=∠ADC=90° как опирающиеся на диаметр.
90°=∠ABC=2∠BDC⇒∠BDC=45°⇒∠ADC=90°-45°=45°
Про углы∠BAD и ∠BCD ничего сказать нельзя. Чтобы понять это, проводим диаметр AC, рисуем равнобедренный прямоугольный треугольник ABC (B оказывается на окружности), после чего произвольным образом выбираем точку D на окружности по другую сторону от диаметра.