дв -бисектриса и медиана, потому что треуг. равнобедреный. ев= (26-2х)/2=13-х
дв=20-х-(13-х)=7см
Если не понятно то вот ещё
обозначим вк медиану к ас. она же будет и высотой в треугольнике авс, поскольку он равнобедренный. медианы делятся в точке пересечения в отношении 2/1, считая от вершины.по условию во=24, тогда ок=12. по теореме пифагора ак=корень из(аоквадрат-окквадрат)=корень из(162-144)=3корня из 2.тогда основание ас=2*ак=6 корней из 2. обозначим mn отрезок l. треугольники мвn и авс подобны поскольку мn параллельна ас. тогда мn/во=ас/вк. мn/24=(6 корней из 2)/36, отсода искомая длина l=мn=4 корня из 2.
боковые стороны по хсм,х+х+се=26
се=26-2х
дв -бисектриса и медиана, потому что треуг. равнобедреный. ев= (26-2х)/2=13-х
дв=20-х-(13-х)=7см
Если не понятно то вот ещё
обозначим вк медиану к ас. она же будет и высотой в треугольнике авс, поскольку он равнобедренный. медианы делятся в точке пересечения в отношении 2/1, считая от вершины.по условию во=24, тогда ок=12. по теореме пифагора ак=корень из(аоквадрат-окквадрат)=корень из(162-144)=3корня из 2.тогда основание ас=2*ак=6 корней из 2. обозначим mn отрезок l. треугольники мвn и авс подобны поскольку мn параллельна ас. тогда мn/во=ас/вк. мn/24=(6 корней из 2)/36, отсода искомая длина l=мn=4 корня из 2.
439.
1) Первый острый угол равен 28°, что и означает, что второй острый угол равен: 90-28 = 62°, или: 180-(90+28) = 62°.
2) Одно и то же: 90-83 = 7°.
443.
1)
Тероема 30-градусного угла прямоугольного треугольника такова: Катет прямоугольного треугольника, лежащий против угла в 30 градусов, равен половине гипотенузы.
Гипотенуза: LM
Катет, лежащий против угла 30° — KL
Тоесть LM = KL*2 = 8 см.
2) На этот раз, нам известна гипотенуза, тоесть чтобы найти KL, надо найти половине гипотенузы: ML/2 => 6/2 = 3 дм.