Даны шесть отрезков длиной 8см; шесть отрезков длиной 9см; шесть отрезков длиной 12см. С использованием нескольких этих отрезков сконструирована треугольная прямая призма. Рёбра, которой построены из одного отрезка выбранной длины. Вычисли максимальный возможный объём этой призмы. Запиши, чему равны cтороны основания призмы (в возрастающем/неубывающем порядке):
?
? см;
? см;
? см.
Высота призмы равна ? см.
Mаксимальный возможный объём этой призмы равен V= ? см3
(при необходимости используй значение 3–√ =1,73, ответ округлить до сотых).
Поскольку сумма углов треугольника равна 180o, то можно считать, что данные углы противолежат вершине, из которой проведена данная медиана.
Пусть в треугольнике ABC известны углы $ \angle$B = $ \beta$ и $ \angle$C = $ \gamma$ и медиана AD = ma, проведённая к стороне BC. На продолжении отрезка AD за точку D возьмём точку A1 так, что DA1 = AD. В треугольнике AA1B известна сторона AA1 = 2ma и углы $ \angle$ABD = $ \beta$ и $ \angle$A1BD = $ \angle$ACB = $ \gamma$.
Из точки B отрезок AD виден под углом $ \beta$, а отрезок A1D — под углом $ \gamma$ Тогда вершина B есть пересечение двух дуг, построенных на AD и DA1, вмещющих углы $ \beta$ и $ \gamma$ соответственно и расположенных по одну сторону от прямой AA1. Отсюда выстекает следующее построение.
Строим середину D произвольного отрезка AA1 = 2ma. На отрезке AD как на хорде построим дугу окружности так, чтобы из каждой точки этой дуги отрезок AD был виден под данным углом $ \beta$. По ту же сторону от прямой AA1 строим на отрезке A1D как на хорде дугу окружности так, чтобы из каждой точки этой дуги отрезок A1D был виден под данным углом $ \gamma$. Пусть B — точка пересечения этих дуг, отличная от D. На продолжении медианы BA1 треугольника ABA1 отложим отрезок A1C, равный BA1. Тогда треугольник ABC — искомый.
Действительно, AD = $ {\frac{1}{2}}$AA1 = ma — данная медиана.
$\displaystyle \angle$ABC = $\displaystyle \angle$ABD = $\displaystyle \beta$, $\displaystyle \angle$ACB = $\displaystyle \angle$A1BC = $\displaystyle \angle$A1BD = $\displaystyle \gamma$
-- данные углы.
Внимание :
Вы не указали у. Найдём за вами х и сторону , как предположительный у.
х=7
Сторона =2
Объяснение:
1)Тк трапеция равнобочная ( по условию рисунка), то угол А=углу Д = 60 градусов.
2) Треугольник СЕД - прямоугольный , тк СЕ - высота ( по усл рисунка) , тогда угол ЕСД=180-90-60=30.
3) катет против 30 градусов =1/2 гипотенузы ( запомнить, очень пригодится ).
Пусть боковая сторона трапеции=у, тогда по теореме Пифагора :
у^2=(sqrt 3)^2 +(у/2)^2
3/4 *у^2=3
у=2 сторона. Тогда ЕД = 2* 1/2=1.
4) опустим перпендикуляр ВО. Тогда ОЕ =ВС =5, и АО=ЕД =1.
Тогда АД= 1+5+1=7 ( тк треугольники равны по второму признаку УСУ)
если что-то не понятно, пишите в комментах. Успехов в учёбе! justDavid