Номер 73
Боковая сторона Х
Основание Х-8
Х+Х+Х-8=28
ЗХ=28+8
ЗХ=36
Х=36:3
Х=12
Каждая боковая сторона равна 12 см
Основание равно 12-8=4 см
Проверка
12•2+4=28 см
Номер 74
Основание Х
Боковая сторона 3Х
Х+3Х+3Х=84
7Х=84
Х=84:7
Основание 12 см
Каждая боковая сторона 12•3=36 см
36•2+12=84 см
Номер 75
Судя по чертежу,треугольник АВС равнобедренный,т к АВ=ВС
В равнобедренном треугольнике углы при основании равны между собой,т е
<ВАС=<ВСА
Углы 1 и 2 являются внешними углами.Сумма внешнего угла и смежного ему внутреннего равна 180 градусов
<1=180-<ВАС
<2=180-<ВСА,а как известно,<ВАС=<ВСА
Поэтому <1=<2
Объяснение:
1) и 2) ответы на теоретические вопросы даются в учебниках.
3. Даны вершины тетраэдра: A(2; -1; 3), B(1; -3; 5), C(6; 2; 5), D(3; -2; - 5). Определить длину высоты от вершины D до плоскости ABC.
Находим нормальный вектор плоскости АВС.
Находим векторы АB и АC.
Вектор АВ = (1-2; -3-(-1); 5-3) = (-1; -2; 2).
Вектор АC = (6-2; 2-(-1); 5-3) = (4; 3; 2).
Нормальный вектор плоскости АBC находим из векторного произведения векторов АB и АC с применением схемы Саррюса.
i j k| i j
-1 -2 2| -1 -2
4 3 2| 4 3 = -4i + 8j - 3k + 2j - 6i + 8k =
= -10i + 10j + 5k.
Нормальный вектор плоскости АBC равен (-10; 10; 5).
Площадь треугольника АВС равна половине модуля векторного произведения векторов АВ и АС.
S = (1/2)√((-10)² + 10² + 5²) = (1*2)√(100 + 100 + 25) = (1/2)√225= (15/2) кв. ед.
Далее находим объём пирамиды ABCD.
Объём пирамиды равен 1/6 модуля смешанного произведения векторов (ABxAC)*AD.
Произведение векторов (ABxAC) найдено выше и равно (-10; 10; 5).
Находим вектор AD, точки A(2; -1; 3), D(3; -2; - 5).
AD = (3-2; -2-(-1); -5-3) = (1; -1; -8),
(ABxAC) = -10 10 5
AD = 1 -1 -8
-10 - 10 - 4 = -60.
V = (1/6)*|-60| = 10.
Длину высоты Н из точки D на плоскость АВС находим по формуле:
H = 3V/S = (3*10/(15/2) = 60/15 = 4.
Номер 73
Боковая сторона Х
Основание Х-8
Х+Х+Х-8=28
ЗХ=28+8
ЗХ=36
Х=36:3
Х=12
Каждая боковая сторона равна 12 см
Основание равно 12-8=4 см
Проверка
12•2+4=28 см
Номер 74
Основание Х
Боковая сторона 3Х
Х+3Х+3Х=84
7Х=84
Х=84:7
Х=12
Основание 12 см
Каждая боковая сторона 12•3=36 см
Проверка
36•2+12=84 см
Номер 75
Судя по чертежу,треугольник АВС равнобедренный,т к АВ=ВС
В равнобедренном треугольнике углы при основании равны между собой,т е
<ВАС=<ВСА
Углы 1 и 2 являются внешними углами.Сумма внешнего угла и смежного ему внутреннего равна 180 градусов
<1=180-<ВАС
<2=180-<ВСА,а как известно,<ВАС=<ВСА
Поэтому <1=<2
Объяснение:
1) и 2) ответы на теоретические вопросы даются в учебниках.
3. Даны вершины тетраэдра: A(2; -1; 3), B(1; -3; 5), C(6; 2; 5), D(3; -2; - 5). Определить длину высоты от вершины D до плоскости ABC.
Находим нормальный вектор плоскости АВС.
Находим векторы АB и АC.
Вектор АВ = (1-2; -3-(-1); 5-3) = (-1; -2; 2).
Вектор АC = (6-2; 2-(-1); 5-3) = (4; 3; 2).
Нормальный вектор плоскости АBC находим из векторного произведения векторов АB и АC с применением схемы Саррюса.
i j k| i j
-1 -2 2| -1 -2
4 3 2| 4 3 = -4i + 8j - 3k + 2j - 6i + 8k =
= -10i + 10j + 5k.
Нормальный вектор плоскости АBC равен (-10; 10; 5).
Площадь треугольника АВС равна половине модуля векторного произведения векторов АВ и АС.
S = (1/2)√((-10)² + 10² + 5²) = (1*2)√(100 + 100 + 25) = (1/2)√225= (15/2) кв. ед.
Далее находим объём пирамиды ABCD.
Объём пирамиды равен 1/6 модуля смешанного произведения векторов (ABxAC)*AD.
Произведение векторов (ABxAC) найдено выше и равно (-10; 10; 5).
Находим вектор AD, точки A(2; -1; 3), D(3; -2; - 5).
AD = (3-2; -2-(-1); -5-3) = (1; -1; -8),
(ABxAC) = -10 10 5
AD = 1 -1 -8
-10 - 10 - 4 = -60.
V = (1/6)*|-60| = 10.
Длину высоты Н из точки D на плоскость АВС находим по формуле:
H = 3V/S = (3*10/(15/2) = 60/15 = 4.