Так как кратчайшее расстояние от точки до прямой, да и вообще от чего-то до чего-то - есть перпендикуляр, то искать, соответственно надо его. итак, по построению у нас получается треугольник, со сторонами 15, 13, 4 (основание), h (тот самый перпендикуляр + высота треугольника). воспользуемся формулой герона. найдем полупериметр: см. далее, считаем по формуле: s = √p * (p - 15) * (p - 13) * (p - 4), где р - полупериметр. получаем: s = √16 * 1 * 3 * 12 = 4 * 6 = 24 cм². также, s = , где 4 - основание⇒ h = 6 cм. - искомая нами высота.
1. Свойство касательных к окружности, проведенной из одной точки: отрезки касательных равны. х-радиус вписанной окружности (см. рисунок в приложении) Учитывая, что периметр равен 54, составляем уравнение: х+х+х+х+3+3+12+12=54 4х+30=54 4х=24 х=6
2. Из условия: ∠С=х ∠А=4х ∠В=4х-58°
Так как четырехугольник вписан в окружность, то ∠А+∠С=180° ∠В+∠Д=180°
4х+х=180° 5х=180° х=36°
Тогда ∠С=36° ∠А=4х=4·36°=144° ∠В=4х-58°=144°-58°=86°
Свойство касательных к окружности, проведенной из одной точки:
отрезки касательных равны.
х-радиус вписанной окружности
(см. рисунок в приложении)
Учитывая, что периметр равен 54, составляем уравнение:
х+х+х+х+3+3+12+12=54
4х+30=54
4х=24
х=6
2. Из условия:
∠С=х
∠А=4х
∠В=4х-58°
Так как четырехугольник вписан в окружность, то
∠А+∠С=180°
∠В+∠Д=180°
4х+х=180°
5х=180°
х=36°
Тогда
∠С=36°
∠А=4х=4·36°=144°
∠В=4х-58°=144°-58°=86°
∠В+∠Д=180° ⇒ ∠Д=180°-∠В=180°-86°=94°
ответ. ∠А=144°
∠В=86°
∠С=36°
∠Д=94°