Даны точки M( -3; 2), P(-1; -2), K(2; 1), D(5; b). a) При каком значении b векторы (MP) ⃗ и (KD) ⃗ коллинеарны? b) При каком значении b векторы (MP) ⃗ и (KD) ⃗ перпендикулярны?
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ:Задание 1
Угол 31 градус и угол 2 равны между собой,как соответственные углы,следовательно,угол 2=31 градус
Углы 1 и 2-смежные,их сумма равна 180 градусов,мы знаем градусную меру угла 2, и можем узнать,чему равен угол1
180-31=149 градусов
Задание 2
Угол 131 градус и угол 2 являются накрест лежащими углами,накрест лежащие углы равны между собой,поэтому и угол 2=131 градус
Углы 1 и 2- смежные,их сумма равна 180 градусов,зная градусную меру угла 2 узнаём,чему равен угол 1
180-131=59 градусов
Объяснение:
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.