Так как сумма углов прилежащих к одной стороне равна 180 градусов, значит углы данные в задаче- противолежащие. Противолежащие углы у параллелограмма равны, следовательно:
A + C= 62 равно 2A=62
Пусть A=x, тогда
2x=62
x=31 градус = угол А и следовательно=уголу C (противолежащие углы парал. равны)
Сумма прилежащих к одной стороне углов равна 180 градусов, следовательно, угол B= 180-A=180-31=149 градусов
ответ: угол B=149 градусов
Задача 2:
Так как противолежащие углы параллелограмма равны, а сумма углов прилежащих к одной стороне равна 180, то можно составить уравнение
Биссектриса внешнего угла треугольника (A) пересекает продолжение противоположной стороны (ВС) в точке (D), отстоящей от концов этой стороны на расстояниях, пропорциональных прилежащим сторонам треугольника. DB:DC=AB:AC.
6:(6+x) = 4:10
15=6+x
x=9
подробнее (доказательство):
если провести BN || DA, получим равнобедренный треугольник ABN:
Объяснение:
Задача 1:
Так как сумма углов прилежащих к одной стороне равна 180 градусов, значит углы данные в задаче- противолежащие. Противолежащие углы у параллелограмма равны, следовательно:
A + C= 62 равно 2A=62
Пусть A=x, тогда
2x=62
x=31 градус = угол А и следовательно=уголу C (противолежащие углы парал. равны)
Сумма прилежащих к одной стороне углов равна 180 градусов, следовательно, угол B= 180-A=180-31=149 градусов
ответ: угол B=149 градусов
Задача 2:
Так как противолежащие углы параллелограмма равны, а сумма углов прилежащих к одной стороне равна 180, то можно составить уравнение
Пусть угол A - x. Тогда угол D=x+70
x+(x+70)=180
2x+70=180
2x=110
x= 55- градусов угол A
1) D=180 - A= 180-55=125 градусов
ответ: 125 градусов = угол D
ответ: x=9
Объяснение:
СВОЙСТВО биссектрисы внешнего угла треугольника:
Биссектриса внешнего угла треугольника (A) пересекает продолжение противоположной стороны (ВС) в точке (D), отстоящей от концов этой стороны на расстояниях, пропорциональных прилежащим сторонам треугольника. DB:DC=AB:AC.
6:(6+x) = 4:10
15=6+x
x=9
подробнее (доказательство):
если провести BN || DA, получим равнобедренный треугольник ABN:
накрест лежащие углы равны DAB=ABN и соответственные углы равны A1AD=ANB... -->
AB=4=AN; CN=6
и по теореме Фалеса: 6:х = 4:6
4х=36
х=9