Диагонали прямоугольной трапеции ABCD взаимно перпендикулярны. Короткая боковая сторона AB равна 10 см, длинное основание AD равно 24 см. Определи:
1. короткое основание BC:
BC=
см.
2. Длины отрезков, на которые делятся диагонали в точке пересечения O:
короткая диагональ делится на отрезки CO=
см и AO=
см;
длинная диагональ делится на отрезки BO=
см и DO=
см.
Объяснение:
Дана правильная треугольная пирамида. Её высота Н равна a√3, радиус окружности, описанной около её основания, равен 2a.
Найти: а) апофему А пирамиды.
Радиус R окружности, описанной около её основания, равен 2/3 высоты основания, то есть R = в√3/3, где в - сторона основания.
Находим сторону основания: в = R/(√3/3) = R√3 = 2a√3.
Отсюда апофема равна: А = √(Н² + (R/2)²) = √(3a² + a²) = √4a² = 2a.
Величина R/2 равна 1/3 высоты основания или радиусу вписанной окружности в основание.
б) угол α между боковой гранью и основанием равен:
α = arc tg(H/(R/2)) = arc tg(a√3/a) = arc tg√3 = 60 градусов.
в) площадь Sбок боковой поверхности.
Периметр основания Р = 3в = 3*2a√3 = 6a√3.
Sбок = (1/2)РА = (1/2)*(6a√3)*2а = 6a²√3 кв.ед.
г) плоский угол γ при вершине пирамиды(угол боковой грани).
γ = 2arc tg((в/2)/А) = 2arc tg((2а√3/2)/2а) = 2arc tg(√3/2) ≈ 1,42745 радиан или 81,7868 градуса.
Объяснение:
1) ∠BCA = 180° - 90° - 44° = 90° - 44° = 46°
∠DCE = 180° - 90° - 46° = 90° - 46° = 44°
∠BCD = 180° - 46° - 44° = 180° - 90° = 90° ⇒ BC⊥CD
ч. т. д.
2) ∠ACE = 180° - ( (180° - 90° - 55°) + (180° - 90° - 35°) ) = 180° - (35° + 55°) = 180° - 90° = 90°
3) sin∠BCH = BH / BC ; BC = BH / sin∠BCH ; BC = 4 / sin30° = 4 / 0,5 = 8
CH = √(BC² - BH²) = √(64 - 16) = √48 = 4√3
sin∠A = CH / AC ; AC = CH / sin∠A ; AC = 4√3 / sin30° = 8√3
AH = √(AC² - CH²) = √(192 - 48) = √144 = 12
ответ : 12 см.
7) Если BD - биссектриса ∠АВС, то ∠ABD = ∠DBC. ∠A = ∠C
∠BDA = 180° - ∠A - ∠ABD , ∠BDC = 180° - ∠C - ∠DBC.
Учитывая вышестоящие равенства, приходим к тому, что ∠BDA = ∠BDC ⇒ DB - биссектриса ∠АDС.
ч. т. д.