Диагонали ромба abcd равны 30 и 40 см. из вершины a проведен к плоскости ромба перпендикуляр ak. найти расстояние от точки k до стороны ab, если ak = 10
Дано: ABCD ромб ; BD =30 ; AC =40 ; AK ⊥ (ABCD) ; AK= 10 .
d( K , CD) = d( K , BC) - ?
Проведем из вершины A высоту ромба : AH ⊥ CD (AH = h) и соединим точка H с точкой K . KH -наклонная , AH ее проекция на плоскости ABCD. По теореме трех перпендикуляров CD ⊥ KH ,т.е. KH есть расстояние от точки K до стороны CD . Из ΔKAH : KH = √(KA² +AH²).
Сторона ромба равно a =√ ( (BD/2)² +(AC/2)² ) = (1/2)*√ ( BD² +AC)² = (1/2)*√ ( 30² +40)² =(1/2)*50=25. S(ABCD) =BD*AC/2 = 30*40/2 = 600. C другой стороны S(ABCD) =a*AH ⇒ 600 =25*AH ⇒AH =24. Окончательно : KH = √(KA² +AH²) = √(10²+24)² =√(100+576) =√676=26.
d( K , CD) = d( K , BC) - ?
Проведем из вершины A высоту ромба : AH ⊥ CD (AH = h) и соединим точка H с точкой K . KH -наклонная , AH ее проекция на плоскости ABCD.
По теореме трех перпендикуляров CD ⊥ KH ,т.е. KH есть расстояние от точки K до стороны CD .
Из ΔKAH : KH = √(KA² +AH²).
Сторона ромба равно a =√ ( (BD/2)² +(AC/2)² ) = (1/2)*√ ( BD² +AC)² =
(1/2)*√ ( 30² +40)² =(1/2)*50=25.
S(ABCD) =BD*AC/2 = 30*40/2 = 600. C другой стороны S(ABCD) =a*AH ⇒
600 =25*AH ⇒AH =24.
Окончательно :
KH = √(KA² +AH²) = √(10²+24)² =√(100+576) =√676=26.
ответ : 26.