ответ:8
Объяснение: введём обозначения: пусть большая наклонная c₁=17, её проекция а₁; меньшая наклонная с₂=10, её проекция а₂ ; расстояние от точки до плоскости обозначим b. 1)Тогда по условию а₁ - а₂ =9 , значит а₁=9 + а₂ 2)По теореме Пифагора из большего прямоугольного треугольника b²= 17²- (9+a₂)²=208-18a₂ -a₂² Из меньшего прямоугольного треугольника b²= 100-а₂². Левые части этих равенств равны, значит и правые равны 208-18a₂ -a₂² = 100 - а₂² 18a₂=108 а₂=6. Найдём b²= 100-а₂²=100-36=64 b=8
1) Площадь трапеции равна полусумме произведения ее оснований на высоту.
В трапеции АВСD найдем высоту ВМ
В треугольнике АВМ :
ВМ - катет и высота
АВ=25см - гипотенуза
АМ=(АD-BC):2 - катет
АМ=(24-10):2=7(см)
BM^2=АВ^2-АМ^2
BM =корень из (25*25-7*7)=24(см)
S=(24+10):2*24=408(см2)
S=408см2 - площадь трапеции
2) Средняя линия трапеции равна полусумме ее оснований
В трапеции АВСD
(ВC+AD)=11*2=22(см)
АD=2+4+7=13(частей)
ВС=4части
13+4=17(частей) - составляют 22см
22:17=1,3(см) - 1 часть
АD=1,3 * 13 = 16,9(см)
ВС=1,3*4=5,2(см)
3) Диагонали ромба пересекаются под прямым углом
АВСD - ромб
О - точка пересечения диагоналей
Рассмотрим треугольник АОВ, он прямоугольный
В треугольнике АОВ:
<АОВ=90град.
180-90=90град. - сумма (<AВО + <BАО)
7+8=15 - частей сумма (<AВО + <ВАО), что составляет 90 градусов
90:15=6(град) - 1 часть
<BAO=6*7=42 град.
<A=42*2=84 град.
<ABO=90-42=48 град.
<B=48*2=96 град.
ответ: углы ромба 84 и 96 градусов.
ответ:8
Объяснение: введём обозначения: пусть большая наклонная c₁=17, её проекция а₁; меньшая наклонная с₂=10, её проекция а₂ ; расстояние от точки до плоскости обозначим b. 1)Тогда по условию а₁ - а₂ =9 , значит а₁=9 + а₂ 2)По теореме Пифагора из большего прямоугольного треугольника b²= 17²- (9+a₂)²=208-18a₂ -a₂² Из меньшего прямоугольного треугольника b²= 100-а₂². Левые части этих равенств равны, значит и правые равны 208-18a₂ -a₂² = 100 - а₂² 18a₂=108 а₂=6. Найдём b²= 100-а₂²=100-36=64 b=8
1) Площадь трапеции равна полусумме произведения ее оснований на высоту.
В трапеции АВСD найдем высоту ВМ
В треугольнике АВМ :
ВМ - катет и высота
АВ=25см - гипотенуза
АМ=(АD-BC):2 - катет
АМ=(24-10):2=7(см)
BM^2=АВ^2-АМ^2
BM =корень из (25*25-7*7)=24(см)
S=(24+10):2*24=408(см2)
S=408см2 - площадь трапеции
2) Средняя линия трапеции равна полусумме ее оснований
В трапеции АВСD
(ВC+AD)=11*2=22(см)
АD=2+4+7=13(частей)
ВС=4части
13+4=17(частей) - составляют 22см
22:17=1,3(см) - 1 часть
АD=1,3 * 13 = 16,9(см)
ВС=1,3*4=5,2(см)
3) Диагонали ромба пересекаются под прямым углом
АВСD - ромб
О - точка пересечения диагоналей
Рассмотрим треугольник АОВ, он прямоугольный
В треугольнике АОВ:
<АОВ=90град.
180-90=90град. - сумма (<AВО + <BАО)
7+8=15 - частей сумма (<AВО + <ВАО), что составляет 90 градусов
90:15=6(град) - 1 часть
<BAO=6*7=42 град.
<A=42*2=84 град.
<ABO=90-42=48 град.
<B=48*2=96 град.
ответ: углы ромба 84 и 96 градусов.