До площини трикутника АВС побудовано перпендикуляр МА. Знайти відстань від точки М до прямої ВС, якщо АВ = 13 см, ВС = 14 см, АС = 15 см, АМ = 5 см. А 20 см; Б 13 см; В 17 см; Г 8 см.
ΔABC - прямоугольный, CD⊥ABВ ΔBCD: по т. ПифагораBD² = BC² - CD² = 20² - 12² = 400 - 144 = 256BD = 16 смСвойства прямоугольного треугольника:1. Высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу.2. Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.CD² = AD • BD ⇒ AD = CD²/ BD = 12²/16 = 144/16 = 9 смAB = AD + BD = 9 + 16 = 25 см▪Если в прямоугольном треугольнике высота опущена из вершины прямого угла на гипотенузу, то высота делит этот треугольник на 3 пары подобных прям. треугольников.Значит, ∠CAD = ∠BCD cos∠CAD = cos∠BCD = CD/BC = 12/20 = 6/10 = 0,6ОТВЕТ: BD = 16 см, АВ = 25 см, cosA = 0,6
Линейным углом двугранного угла называется угол, образованный лучами с вершиной на ребре, и при этом лучи лежат на гранях двугранного угла и перпендикулярны ребру.
В ∆ АВС опустим высоту АЕ перпендикулярно BC, тогда DA перпендикулярен ( ABC ) AE принадлежит ( АВС ) Значит, DA перпендикулярен AE AE перпендикулярен ВС Тогда по теореме о трёх перпендикулярах DE перпендикулярен ВС
Из этого следует, что угол AED – линейный угол двугранного угла ABCD.
Рассмотрим ∆ АВС: Высота равностороннего треугольника вычисляется по формуле:
h = a√3 / 2
где а – сторона равностороннего треугольника, h – высота
Из вершины прямого угла С проведена высота CD, равная 12 см. Катет ВС = 20 см. Найдите BD, АВ и cosА.
============================================================
ΔABC - прямоугольный, CD⊥ABВ ΔBCD: по т. ПифагораBD² = BC² - CD² = 20² - 12² = 400 - 144 = 256BD = 16 смСвойства прямоугольного треугольника:1. Высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу.2. Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.CD² = AD • BD ⇒ AD = CD²/ BD = 12²/16 = 144/16 = 9 смAB = AD + BD = 9 + 16 = 25 см▪Если в прямоугольном треугольнике высота опущена из вершины прямого угла на гипотенузу, то высота делит этот треугольник на 3 пары подобных прям. треугольников.Значит, ∠CAD = ∠BCD cos∠CAD = cos∠BCD = CD/BC = 12/20 = 6/10 = 0,6ОТВЕТ: BD = 16 см, АВ = 25 см, cosA = 0,6В ∆ АВС опустим высоту АЕ перпендикулярно BC, тогда
DA перпендикулярен ( ABC )
AE принадлежит ( АВС )
Значит, DA перпендикулярен AE
AE перпендикулярен ВС
Тогда по теореме о трёх перпендикулярах DE перпендикулярен ВС
Из этого следует, что угол AED – линейный угол двугранного угла ABCD.
Рассмотрим ∆ АВС:
Высота равностороннего треугольника вычисляется по формуле:
h = a√3 / 2
где а – сторона равностороннего треугольника, h – высота
AE = AB × √3 / 2 = 6 × √3 / 2 = 3√3
Рассмотрим ∆ AED (угол DAE = 90°):
tg AED = AD / AE = 4 / 3√3 = 4√3 / 9
ОТВЕТ: 4√3 / 9