Пусть ABCD — произвольный выпуклый четырехугольник, K, L, M и N — середины сторон AB, BC, CD и AD соответственно. Так как KL — средняя линия треугольника ABC, то прямая KL параллельна прямой AC и Аналогично, прямая MN параллельна прямой AC и Следовательно, KLMN — параллелограмм. Рассмотрим треугольник KBL. Его площадь равна четверти площади треугольника ABC. Площадь треугольника MDN также равна четверти площади треугольника ACD. Следовательно,
Дано: 1) Для начала найдем гипотенузу по т. Пифагора:
АС=7 ║ АВ=√7²+15²=√49+225=√274
ВС=15║ 2) Синус - отношение проти-го катета к гипотенузе.
sin∠B=AC/AB=7/√274
Найти: 3) Косинус - отношение прил-го катета к гипотенузе.
sin, cos, ctg, tg cos∠B=ВС/АВ= 15/√274
4) Тангенс - отношение проти-го катета к прил-му.
tg∠B=АС/ВС=7/15
5) Котангенс - отношение косинуса к синусу.
ctg∠B=cos/sin= (15/√274)/(7/√274)
Или отношение прил-го катета к проти-му.
ctg∠B=BC/AC=15/7=2 1/7
Пусть ABCD — произвольный выпуклый четырехугольник, K, L, M и N — середины сторон AB, BC, CD и AD соответственно. Так как KL — средняя линия треугольника ABC, то прямая KL параллельна прямой AC и Аналогично, прямая MN параллельна прямой AC и Следовательно, KLMN — параллелограмм. Рассмотрим треугольник KBL. Его площадь равна четверти площади треугольника ABC. Площадь треугольника MDN также равна четверти площади треугольника ACD. Следовательно,
Аналогично,
Это значит, что
откуда вытекает, что