1) теорема о свойствах равнобедренного треугольника. в любом равнобедренном треугольнике: 1) углы при основании равны; 2) медиана, биссектриса и высота, проведенные к основанию, . доказательство. оба эти свойства доказываются совершенно одинаково. рассмотрим равнобедренный треугольник авс, в котором ав = вс. пусть вв1 - биссектриса этого треугольника. как известно, прямая bb1 является ось симметрии угла авс. но в силу равенства ab = bc при той симметрии точка а переходит в с. следовательно, треугольники abb1 и cbb1 равны. отсюда все и следует. ведь в равных фигурах равны все соответствующие элементы. значит, ðbab1 = ðbcb1. пункт 1) доказан. кроме этого, ab1 = cb1, т. е. bb1 - медиана и ðbb1a = ðbb1c = 90°; таким образом, bb1 также и высота треугольника
Место старта H
I
12,6км IК (конец пути)
I I 5,6км
II
24 км
Соедини точки Н и точку К (это и будет искомое расстояние).
Наверху получим прямоугольный треугольник, у которого
вертикальный катет = 12,6 - 5,6 = 7 (км)
горизонтальный катет = 24 км
гипотенуза НК, которую будем искать по теореме Пифагора:
НК^2 = 7^2 + 24^2 = 49 + 576 = 625
HK = 25
ответ: на расстоянии 25 км от места старта находится яхта.