ДОМАШНЄ ЗАВДАННЯ З ГЕОМЕТРІЇ НА 03.02 1. Знайдіть кут трикутника, якщо два інші його кути дорівнюють 31 1 24°. 2. Кут при основі рівнобедреного трикутника дорівнює 29°. Знайдіть кут при вершині цього трикутника. 3. Знайдіть на рисунку 1 невідомі кути трикутника DEF. E E Е. 17 37 134 152 717D F D 157 6 Puc. 1 Р
<A+<B=180°, значит АD параллельна ВС (так как <A и <B - внутренние односторонние при прямых AD и ВС и секущей АВ). АВ и CD параллельны (дано). Следовательно, четырехугольник АВСD - параллелограмм по признаку: "Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм." и ВС=AD, а АО=ОС, ВО=ОD по свойству диагоналей параллелограмма.. ВМ=КD (дано) и треугольники ВМО и ОDK равны по двум сторонам и углу между ними (ВМ=KD, ВО=ОD,<МBO=<ODК как накрест лежащие при параллельных ВС и AD и секущей ВD. Следовательно, МО=ОК (соответственные стороны равных треугольников), что и требовалось доказать.
сделаем построение - сразу все видно
точки K L M N - середины сторон прямоугольника АВСД
проведем прямые LN (параллельна АВ и СД) и КМ (параллельна ВС и АД)-
они образуют равные прямоугольники (стороны попарно равны)
KBLO с диагональю KL
OLCM с диагональю LM
NOMD с диагональю NM
АKОN с диагональю KN
и так понятно, что диагонали в равных прямоугольниках равны
KL=LM=NM=KN
но если кто сомневается , то можно доказать через теорему Пифагора
KL^2=KB^2+BL^2
LM^2=LC^2+CM^2
NM^2=MD^2+ND^2
KN^2=AN^2+AK^2
правые части этих выражений равны - это все половинки сторон
а значит равны и левые части
итак все стороны нового четырехугольника равны - это основное свойство РОМБА
если бы начальной фигурой был квадрат - то внутри тоже получился бы квадрат - но у нашего ромба углы 60-120-60-120
ВМ=КD (дано) и треугольники ВМО и ОDK равны по двум сторонам и углу между ними (ВМ=KD, ВО=ОD,<МBO=<ODК как накрест лежащие при параллельных ВС и AD и секущей ВD.
Следовательно, МО=ОК (соответственные стороны равных треугольников), что и требовалось доказать.