2) Т.к. треугольник равнобедренный, то высота делит его основание пополам, т.е. основание (обозначим его AO) одного из двух прямоугольных треугольников равно: AO=AC/2=12/2=6 см.
3) Рассмотрим один из прямоугольных треугольников (обозначим его AOB)
Мы знаем, чему равны оба катета прямоугольного треугольника (АО=6 см, ОB=h=8 см), теперь по теореме Пифагора найдём его гипотенузу AB:
AB=√(AO²+ОС²)=√(6²+8²)=√(36+64)=√100=10 см.
Т.к. треугольник равнобедренный, то BC - тоже 10 см.
4) Периметр равнобедренного треугольника P=AB+BC+AC=10+10+12=32 см.
АВС - правильный треугольник со стороной а. АО - радиус описанной окружности. R=АО=а√3/3. ∠АОВ=∠ВОС=АОС=360/3=120°. Так как точка М - середина дуги АВ, то ∠АОМ=∠АОВ/2=60°. Соответственно ∠АОN=60°, а ∠MON=120°. Большая дуга MN равна 360-∠MON=360-120=240°. Вписанный угол MAN опирается на дугу MN и равен её половине. ∠MAN=∩MN/2=240/2=120°. Треугольники AMN и OMN равны, т.к. оба равнобедренные, у них общее основание и углы при вершинах равны, значит углы при основании тоже равны. Соответственно ΔOMN=ΔOBC, значит MN=BC=a. В четырёхугольнике AMON стороны равны, значит он ромб, значит АР=РО. АР=R/2=а√3/6. В правильном треугольнике АЕН АР - высота. Для правильного тр-ка h=a√3/2 (здесь а другая, только для формулы) ⇒ а=2h/√3. ЕН=2·АР/√3=2·а√3/(6√3)=а/3 (здесь а - сторона тр-ка АВС. а=АВ). MN=a, ЕН =а/3. Исходя из симметрии построенного чертежа, ΔAMP=ΔANP, значит МЕ=NН. МЕ=NН=(MN-ЕН)/2=(а-а/3)/2=а/3. МЕ=ЕН=NН=а/3. Доказано.
h=S/(½*a)=48/(0.5*12)=48/6=8 см
2) Т.к. треугольник равнобедренный, то высота делит его основание пополам, т.е. основание (обозначим его AO) одного из двух прямоугольных треугольников равно: AO=AC/2=12/2=6 см.
3) Рассмотрим один из прямоугольных треугольников (обозначим его AOB)
Мы знаем, чему равны оба катета прямоугольного треугольника (АО=6 см, ОB=h=8 см), теперь по теореме Пифагора найдём его гипотенузу AB:
AB=√(AO²+ОС²)=√(6²+8²)=√(36+64)=√100=10 см.
Т.к. треугольник равнобедренный, то BC - тоже 10 см.
4) Периметр равнобедренного треугольника P=AB+BC+AC=10+10+12=32 см.
ответ: P=32 см
∠АОВ=∠ВОС=АОС=360/3=120°.
Так как точка М - середина дуги АВ, то ∠АОМ=∠АОВ/2=60°. Соответственно ∠АОN=60°, а ∠MON=120°.
Большая дуга MN равна 360-∠MON=360-120=240°.
Вписанный угол MAN опирается на дугу MN и равен её половине. ∠MAN=∩MN/2=240/2=120°.
Треугольники AMN и OMN равны, т.к. оба равнобедренные, у них общее основание и углы при вершинах равны, значит углы при основании тоже равны. Соответственно ΔOMN=ΔOBC, значит MN=BC=a.
В четырёхугольнике AMON стороны равны, значит он ромб, значит АР=РО. АР=R/2=а√3/6.
В правильном треугольнике АЕН АР - высота. Для правильного тр-ка h=a√3/2 (здесь а другая, только для формулы) ⇒ а=2h/√3.
ЕН=2·АР/√3=2·а√3/(6√3)=а/3 (здесь а - сторона тр-ка АВС. а=АВ).
MN=a, ЕН =а/3.
Исходя из симметрии построенного чертежа, ΔAMP=ΔANP, значит МЕ=NН.
МЕ=NН=(MN-ЕН)/2=(а-а/3)/2=а/3.
МЕ=ЕН=NН=а/3.
Доказано.