1) Скорость плота равна скорости течения реки v(плота)=v(теч.)=4 км/час. К тому времени, когда лодка вернулась на пристань А, плот был в пути: t(время)=S(расстояние)÷v(скорость)=28÷4=7 (часов).
2) Лодка отправилась на 1 час позже, значит она была в пути 7-1=6 часов. Лодка проплыла между пристанями А и В 45 км, и вернулась обратно от пристани В к А, проплыв ещё 45 км.
Пусть х - собственная скорость лодки. По течению моторная лодка плыла со скоростью:
v(по теч.)=v(собств.) + v(теч.)=х+4 км/час
Против течения моторная лодка плыла со скоростью:
v(пр. теч.)=v(собств.) - v(теч.)=х-4 км/час
Время в пути по течению равно: t(по теч.) =S÷v(по теч.)=45/(х+4) часа
Время в пути против течения равно: t(пр. теч.) =S÷v(пр. теч.)=45/(х-4) часа.
Всего на путь туда и обратно ушло 6 часов.
Составим и решим уравнение:
45/(х+4)+45/(х-4)=6 (умножим на (х-4)(х+4), чтобы избавиться от дробей)
ВС и АК лежат в разных плоскостях, не параллельны и не пересекаются. Они скрещивающиеся.
Расстоянием между скрещивающимися прямыми называется расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой.
ВС║AD, AD лежит в плоскости ADK⇒ ВС║плоскости ADC.
Расстояние от любой точки прямой ВС до плоскости ADC одинаково.
Расстоянием от т.С до плоскости является длина перпендикуляра СН, проведенного к прямой DK ( т.к. они лежат в одной плоскости), т.е. высота равнобедренного ∆ СКD.
Площадь ∆ СКD равна половине произведения его высоты КМ на сторону СD.
КМ из прямоугольного ∆ КМС по т.Пифагора равна √128=8√2
S ∆ CKD=8√2•8:2=16√2
CH=2S∆CKD:KD=(8√2)/3 см –это ответ.
–––––––––––––––––––––––––––––––
2) Обозначим данные плоскости α и β
Пусть в плоскости α лежит прямая а, параллельная m -линии пересечения плоскостей, а в плоскости β– прямая b.
Угол между двумя плоскостями - двугранный. Его величина равна линейному углу, образованному двумя лучами, проведенными в плоскостях из одной точки их общей границы перпендикулярно к ней.
Проведем из точки В на m перпендикулярно к ней в плоскостях α и β лучи, пересекающие прямые а и b в точках А и С соответственно. . Т.к. прямые a и b параллельны m, то BA и ВС пересекают их под прямым углом. АВ - расстояние от прямой а до m, СВ - расстояние от b до m.
Искомое расстояние - отрезок АС, проведенный между а и b перпендикулярно к ним.
Дано:
S=45 км
S(плота)=28 км
v(теч.)=v(плота)=4 км/час
Найти:
v(собств. лодки)=? км/час
РЕШЕНИЕ
1) Скорость плота равна скорости течения реки v(плота)=v(теч.)=4 км/час. К тому времени, когда лодка вернулась на пристань А, плот был в пути: t(время)=S(расстояние)÷v(скорость)=28÷4=7 (часов).
2) Лодка отправилась на 1 час позже, значит она была в пути 7-1=6 часов. Лодка проплыла между пристанями А и В 45 км, и вернулась обратно от пристани В к А, проплыв ещё 45 км.
Пусть х - собственная скорость лодки. По течению моторная лодка плыла со скоростью:
v(по теч.)=v(собств.) + v(теч.)=х+4 км/час
Против течения моторная лодка плыла со скоростью:
v(пр. теч.)=v(собств.) - v(теч.)=х-4 км/час
Время в пути по течению равно: t(по теч.) =S÷v(по теч.)=45/(х+4) часа
Время в пути против течения равно: t(пр. теч.) =S÷v(пр. теч.)=45/(х-4) часа.
Всего на путь туда и обратно ушло 6 часов.
Составим и решим уравнение:
45/(х+4)+45/(х-4)=6 (умножим на (х-4)(х+4), чтобы избавиться от дробей)
45×(х-4)(х+4)/(х+4) + 45×(х+4)(х-4)/(х-4)=6(х+4)(х-4)
45(х-4) + 45(х+4)=6(х²-16)
45х-180+45х+180=6х²-96
90х=6х²-96
6х²-90х-96=0
D=b²-4ac=(-90)²+4×6×(-96)=8100+2304=10404 (√D=102)
х₁=(-b+√D)/2a=(-(-90)+102)/2×6 =192/12=16 (км/час)
х₂=(-b-√D)/2a=(-(-90) -102)/2×6=-12/12=-1 (х₂<0 - не подходит)
ОТВЕТ: скорость лодки в неподвижной воде (собственная скорость) равна 16 км/час.
Объяснение:
Сори если это не то
1) Плоскость α проведена через сторону CD прямоугольника АВСD перпендикулярно к его плоскости.
Из точки А к плоскости α проведена наклонная АК =15 см.
Найти расстояние между прямыми ВС и АК, если АВ = 8 см, AD = 9 см, КС = 12 см.
Сделаем рисунок.
Плоскость α перпендикулярна плоскости прямоугольника. ⇒
KD⊥AD и ⊥DC. ∆ АDC - прямоугольный. По т.Пифагора
DK=√(AK*-AD²)=√(225-81)=12
∆CKD равнобедренный.
ВС и АК лежат в разных плоскостях, не параллельны и не пересекаются. Они скрещивающиеся.
Расстоянием между скрещивающимися прямыми называется расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой.
ВС║AD, AD лежит в плоскости ADK⇒ ВС║плоскости ADC.
Расстояние от любой точки прямой ВС до плоскости ADC одинаково.
Расстоянием от т.С до плоскости является длина перпендикуляра СН, проведенного к прямой DK ( т.к. они лежат в одной плоскости), т.е. высота равнобедренного ∆ СКD.
Площадь ∆ СКD равна половине произведения его высоты КМ на сторону СD.
КМ из прямоугольного ∆ КМС по т.Пифагора равна √128=8√2
S ∆ CKD=8√2•8:2=16√2
CH=2S∆CKD:KD=(8√2)/3 см –это ответ.
–––––––––––––––––––––––––––––––
2) Обозначим данные плоскости α и β
Пусть в плоскости α лежит прямая а, параллельная m -линии пересечения плоскостей, а в плоскости β– прямая b.
Угол между двумя плоскостями - двугранный. Его величина равна линейному углу, образованному двумя лучами, проведенными в плоскостях из одной точки их общей границы перпендикулярно к ней.
Проведем из точки В на m перпендикулярно к ней в плоскостях α и β лучи, пересекающие прямые а и b в точках А и С соответственно. . Т.к. прямые a и b параллельны m, то BA и ВС пересекают их под прямым углом. АВ - расстояние от прямой а до m, СВ - расстояние от b до m.
Искомое расстояние - отрезок АС, проведенный между а и b перпендикулярно к ним.
Проведем в ∆ АВС высоту СН.
СН=СВ•sin30°=√3
ВН=ВС•cos30°=3
В прямоугольном ∆ АСН катет АН=АВ-ВН=5.
По т.Пифагора
АС=√(AH²+CH²)=√(3+25)=2√7 см