Дополни данные условия необходимым равенством для выполнения данного признака равенства треугольников ΔTVU=ΔZPG. (Углы назови одной буквой и не используй знак угла.)
1. Если TV = ZP, VU = PG, = , то ΔTVU=ΔZPG по первому признаку.
2. TV = ZP, VU = PG, = , то ΔTVU=ΔZPG по третьему признаку.
3. TU = ZG, ∡ T = ∡ Z, = , то ΔTVU=ΔZPG по второму признаку.
4. TU = ZG, ∡ T = ∡ Z, = , то ΔTVU=ΔZPG по первому признаку.
5. ∡ V = ∡ P, ∡ U = ∡ G, = , то ΔTVU=ΔZPG по второму признаку.
1)там есть две пары вертикальных углов,они равны, сумма всех углов 360°,значит сумма двух разных углов равна 180°,но один больше другого на 30,поэтому получается,что d+b=180°
b+30°+b=180°
2b=150°
b=75°
d=105°
2)b+d=180°
b=d+100°
2d=180°-100°
2d=80°
d=40°
b=140°
3)b+d=180°
b=8d
9d=180°
d=20°
b=(20°)*8=160°
4)см пункт 1,есть 2 пары вертикальных углов,они равны между собой
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².
1)75,75,105,105
2)40,140
3)20,160
4)80,100,80
5)10,10,170,170
Объяснение:
1)там есть две пары вертикальных углов,они равны, сумма всех углов 360°,значит сумма двух разных углов равна 180°,но один больше другого на 30,поэтому получается,что d+b=180°
b+30°+b=180°
2b=150°
b=75°
d=105°
2)b+d=180°
b=d+100°
2d=180°-100°
2d=80°
d=40°
b=140°
3)b+d=180°
b=8d
9d=180°
d=20°
b=(20°)*8=160°
4)см пункт 1,есть 2 пары вертикальных углов,они равны между собой
то есть 2 угла из 4 : 100°
сумма всех 360°
(360°-100°-100°)/2=80°
то есть углы:80°,100°,80°
5)b=x
d=17x
b+d=180°
17x+x=180°
18x=180°
x=10°
b=10°
d=170°