Вообще небольшая ошибка. На рисунке угол 80 градусов, а в условии 90
1. Если угол 80 градусов:
Точки A и B являются касательными к окружности. Радиус, проведенный к точке описанной окружности образует с касающей угол 90 градусов, то есть углы OAC и OBC равны по 90 градусов.
Сумма углов четырёхугольника равна 360 градусов. Мы знаем 3 угла, нам нужно найти 4-ый.
Угол ACB = 360 - 80 - 90 - 90 = 100 градусов
2. Если угол 90 градусов:
Точки A и B являются касательными к окружности. Радиус, проведенный к точке описанной окружности образует с касающей угол 90 градусов, то есть углы OAC и OBC равны по 90 градусов.
Сумма углов четырёхугольника равна 360 градусов. Мы знаем 3 угла, нам нужно найти 4-ый.
Пусть основание равно Х, тогда боковая сторона равна (Х-9). В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна √[(Х-9)²-(X/2)²]=√(15²-12²)=9см. ответ: высота, проведенная к основанию, равна 9см.
Вообще небольшая ошибка. На рисунке угол 80 градусов, а в условии 90
1. Если угол 80 градусов:
Точки A и B являются касательными к окружности. Радиус, проведенный к точке описанной окружности образует с касающей угол 90 градусов, то есть углы OAC и OBC равны по 90 градусов.
Сумма углов четырёхугольника равна 360 градусов. Мы знаем 3 угла, нам нужно найти 4-ый.
Угол ACB = 360 - 80 - 90 - 90 = 100 градусов
2. Если угол 90 градусов:
Точки A и B являются касательными к окружности. Радиус, проведенный к точке описанной окружности образует с касающей угол 90 градусов, то есть углы OAC и OBC равны по 90 градусов.
Сумма углов четырёхугольника равна 360 градусов. Мы знаем 3 угла, нам нужно найти 4-ый.
Угол ACB = 360 - 90 - 90 - 90 = 90 градусов
В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна
√[(Х-9)²-(X/2)²]=√(15²-12²)=9см.
ответ: высота, проведенная к основанию, равна 9см.