Объяснение: Точка M равноудалена от всех вершин данного треугольника, следовательно, все наклонные из М к вершинам, а, значит, и к плоскости треугольника, равны, поэтому равны и их проекции ОС=ОВ=ОА и равны радиусу описанной около ∆ АВС окружности.
Искомое расстояние МС - гипотенуза прямоугольного ⊿ МОС. Для её нахождения нужно найти катет ОС этого треугольника. ОС=R.
Формула радиуса описанной окружности R=a•b•c/4S ( где а, b и с - стороны треугольника).
S=BD•AC:2=9•6:2=27
Боковые стороны ∆ (АВС) найдём из ⊿ АВD. Высота ВD в равнобедренном треугольнике ещё и медиана (свойство)
ответ: l²=34
Объяснение: Точка M равноудалена от всех вершин данного треугольника, следовательно, все наклонные из М к вершинам, а, значит, и к плоскости треугольника, равны, поэтому равны и их проекции ОС=ОВ=ОА и равны радиусу описанной около ∆ АВС окружности.
Искомое расстояние МС - гипотенуза прямоугольного ⊿ МОС. Для её нахождения нужно найти катет ОС этого треугольника. ОС=R.
Формула радиуса описанной окружности R=a•b•c/4S ( где а, b и с - стороны треугольника).
S=BD•AC:2=9•6:2=27
Боковые стороны ∆ (АВС) найдём из ⊿ АВD. Высота ВD в равнобедренном треугольнике ещё и медиана (свойство)
По т.Пифагора. АВ=√(BD²+AD²)=√(9²+3²)=√90
R=(√90•√90•6):4•27= 5
ОС=5 ⇒ МС²=(MO²+OC²)=3²+5²=34 ⇒ l²=34
радиус окружности описанной возле правильного треугольника находится по формуле : R=корень из 3 делить на три и умноженный на сторону треугольника
R=корень из 3 деленный на три умножаем на 4 корня из 6
R=корень из 288 деленного на 3
R=12 корней из 2 и все это делить на 3
R=4 корня из 2
далее находим сторону квадрата вписанного в эту же окружности
радиус окружности треугольника равен радиусу окружности квадрата
радиус квадрата равен R=корень из 2 деленный на 2 и все это умножить на сторону квадрата (t)
выражаем t из этой формулы получаем
t= R делить на корень из 2 деленный на 2
t=4корня из 2 делить на корень из 2 деленный на 2
t=8 см
ответ: 8 см.