Изобразите две пересекающиеся прямые. На сколько частей они разбивают плоскость? Изобразите три прямые, пересекающиеся в одной точке. На сколько частей они разбивают плоскость? Изобразите четыре прямые, пересекающиеся в одной точке. На сколько частей они разбивают плоскость? По рисунку 4.10 запишите пары смежных углов. По рисунку 4.10 запишите пары вертикальных углов. В С D А о E F Один из двух углов, образованных при пересечении двух пря- мых, на 20" меньше другого. Найдите эти углы. Дополнительно (по желанию) Сумма трех углов, образованных при пересечении двух пря- мых, равна 306. Найдите больший из них. Выучить теорию и термины по данному уроку
Сказка о треугольниках Жила на свете важная геометрическая фигура. Важность её признавалась всеми людьми, ибо при изготовлении многих вещей форма её служила образцом. Любимая песенка этой чудо фигуры Меня знает каждый школьник, И зовусь я треугольник. У меня вершины три, Также три и стороны. Два угла при основании мои равны и боковые стороны одинаковые, думал треугольник и решил назвать себя равнобедренным. Скучно было равнобедренному треугольнику одному, отправился он искать друзей. Встречает как-то фигуру: стороны три и угла три. Вот только один угол прямой! Ура! Это прямоугольный треугольник! Стали они дружить. Вместе трудиться, вместе веселиться. Как – то встретили отрезок и решили поэкспериментировать: приложили его одним концом к вершине, а другим к середине противоположной стороны. Красота, это будет МЕДИАНА! Попробуем ещё – поделим угол пополам! Все также скачет по углам Веселая, смешная крыса. Мы делим радость пополам, А делит угол биссектриса. Вот так они проводили досуг. Однажды гуляя по лесу, встретили очень похожую парочку. Познакомились и стали играть в сравнение. Прижался равнобедренный треугольник к похожему на себя и все точки совпали. Ура! Мы одинаковые. Думали они о равенстве думали и придумали три теоремы: -если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то треугольники равны; - если сторона и два прилежащих к ней угла одного треугольника равны соответственно стороне и двум прилежащим к ней углам другого треугольника, то треугольники равны; - если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то треугольники равны. Много времени проводят вместе друзья и встречают новых измени немного текст под себя
ожидайте результат анализа функции (точки пересечения с осями координат) и график функции под полем задания функции.
При необходимости вы можете построить одновременно графики двух функций онлайн. Для этого нажмите кнопку «Добавить функцию».
В случае построения двух графиков функции будут показаны их точки пересечения.
Таблица обозначений для задания функций
Математическая операция Символ Пример использования
Десятичная дробь Можно и через точку, и через запятую. «2,789» или «2.879»
Сложение «+» x + 1
Вычитание «-» x - 2.5
Умножение «*»(shift + 8) 2 * x
Коэффициент при «x» можно записывать без знака умножения. Например: «2x».
Но при умножении скобок обязательно использовать символ «*».
Правильно: «(2x - 1) * (6.7 - x)».
Деление «/» (знак во на английской раскладке) (x - 1) / 2
Дробь Кнопка «Дробь»
x - 2
10
-
1
2
Модуль Кнопка «Модуль» |x - 2.3|
Возведение в степень Кнопка «Возведение в степень»
или
«^»(shift + 6)
При нажатой кнопке «Возведение в степень» символы попадают в степень. Чтобы вернуться к обычному набору символу, нужно отжать кнопку «Возведение в степень».
Другой задания степени через знак «^». Например: «x^(2)».
Жила на свете важная геометрическая фигура. Важность её признавалась всеми людьми, ибо при изготовлении многих вещей форма её служила образцом. Любимая песенка этой чудо фигуры
Меня знает каждый школьник,
И зовусь я треугольник.
У меня вершины три,
Также три и стороны.
Два угла при основании мои равны и боковые стороны одинаковые, думал треугольник и решил назвать себя равнобедренным.
Скучно было равнобедренному треугольнику одному, отправился он искать друзей. Встречает как-то фигуру: стороны три и угла три. Вот только один угол прямой! Ура! Это прямоугольный треугольник! Стали они дружить.
Вместе трудиться, вместе веселиться. Как – то встретили отрезок и решили поэкспериментировать: приложили его одним концом к вершине, а другим к середине противоположной стороны. Красота, это будет МЕДИАНА! Попробуем ещё – поделим угол пополам!
Все также скачет по углам
Веселая, смешная крыса.
Мы делим радость пополам,
А делит угол биссектриса.
Вот так они проводили досуг. Однажды гуляя по лесу, встретили очень похожую парочку. Познакомились и стали играть в сравнение. Прижался равнобедренный треугольник к похожему на себя и все точки совпали. Ура! Мы одинаковые. Думали они о равенстве думали и придумали три теоремы:
-если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то треугольники равны;
- если сторона и два прилежащих к ней угла одного треугольника равны соответственно стороне и двум прилежащим к ней углам другого треугольника, то треугольники равны;
- если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то треугольники равны.
Много времени проводят вместе друзья и встречают новых
измени немного текст под себя
Чтобы построить график функции онлайн:
укажите функцию в поле выше в виде «y = x2 - 3»;
нажмите кнопку «Построить график функции»;
ожидайте результат анализа функции (точки пересечения с осями координат) и график функции под полем задания функции.
При необходимости вы можете построить одновременно графики двух функций онлайн. Для этого нажмите кнопку «Добавить функцию».
В случае построения двух графиков функции будут показаны их точки пересечения.
Таблица обозначений для задания функций
Математическая операция Символ Пример использования
Десятичная дробь Можно и через точку, и через запятую. «2,789» или «2.879»
Сложение «+» x + 1
Вычитание «-» x - 2.5
Умножение «*»(shift + 8) 2 * x
Коэффициент при «x» можно записывать без знака умножения. Например: «2x».
Но при умножении скобок обязательно использовать символ «*».
Правильно: «(2x - 1) * (6.7 - x)».
Деление «/» (знак во на английской раскладке) (x - 1) / 2
Дробь Кнопка «Дробь»
x - 2
10
-
1
2
Модуль Кнопка «Модуль» |x - 2.3|
Возведение в степень Кнопка «Возведение в степень»
или
«^»(shift + 6)
При нажатой кнопке «Возведение в степень» символы попадают в степень. Чтобы вернуться к обычному набору символу, нужно отжать кнопку «Возведение в степень».
Другой задания степени через знак «^». Например: «x^(2)».
Корень Кнопка
«Корень» 2 √(x - 2) — квадратный корень
3 √(2x - 1) — кубический корень
Синус Кнопка
«Синус» sin(x + 1)
Косинус Кнопка
«Косинус» cos(x)
Тангенс Кнопка
«Тангенс» tg(2.5 - x)
Число π (пи) Кнопка
«Число «Пи» sin(x + π) + 2
Логарифм Кнопка
«Логарифм» log2(2x - 1,4)
Натуральный логарифм Кнопка
«Натуральный логарифм» ln(x) - 2
Десятичный логарифм Кнопка
«Десятичный логарифм» lg(2.3 - x)
Основание натурального логарифма (число Эйлера) Кнопка
«Основание натурального логарифма» ex
Объяснение: