Центры трёх попарно касающихся друг друга внешним образом окружностей расположены в точках A, B, C, ∠ABC = 90°. Точки касания – K, P и M; точка P лежит на стороне AC. Найдите угол KPM.
Подсказка
Выразите искомый угол через острые углы треугольника ABC.
Решение
Обозначим ∠BAC = α, ∠ACB = γ (α + γ = 90°).
Пусть точка K лежит на отрезке AB. Из равнобедренных треугольников KAP и MCP находим, что ∠APK = 90° – α/2, ∠MPC = 90° – γ/2.
1.
Площадь квадрата равна
S=a²
А значит просто подставляем сюда значение
S=9.1²дм=82,81дм²
2.
Сначала найдём площадь прямоугольника.Она ищется так
S=ab=18см×50см=900см²
Значит площадь квадрата тоже равна 900
Отсюда можно найти сторону квадрат
a=корню из площади S=корень из 900=30см
3.Давай посмотрим
Была сторона а=2,значит S=4
Увеличим а в 2 раза,а стало равно 4,а площадь 16
Для нагядного примера возьмём еще значения.
Например а=3,значит S=9
Увеличаем а в 2 раза,следовательно а=6,а S=36
Как видим везде площади увеличилсь в 4 раза
Значит ответ :в 4 раза
Условие
Центры трёх попарно касающихся друг друга внешним образом окружностей расположены в точках A, B, C, ∠ABC = 90°. Точки касания – K, P и M; точка P лежит на стороне AC. Найдите угол KPM.
Подсказка
Выразите искомый угол через острые углы треугольника ABC.
Решение
Обозначим ∠BAC = α, ∠ACB = γ (α + γ = 90°).
Пусть точка K лежит на отрезке AB. Из равнобедренных треугольников KAP и MCP находим, что ∠APK = 90° – α/2, ∠MPC = 90° – γ/2.
Значит, ∠KPM = 180° – (∠APK + ∠MPC) = ½ (α + γ) = 45°.
ответ
45°.