Введем обозначения: ABC - исходный треугольник с прямым углом C, высотой CN и биссектрисой AL пересекающимися в точке K.
Нетрудно видеть, что прямоугольные треугольники ACL и ANK подобны. И коэффициент подобия по отношению их гипотенуз |AL|/|AK| = (9+6)/9 = 15/9 = 5/3.
Стало быть и их катеты |AC|/|AN| = 5/3. Но прямоугольный треугольник ACN (в котором эти стороны гипотенуза и катет) подобен всему треугольнику ABC в котором стало быть стороны |AB|, |AC| и |CB|относятся как 5:3:4 (4 = корень(5*5-3*3).
Достаточно узнать длину |AC| чтобы найти всю площадь. S = |AC|*|CB|/2 = |AC|*(4/3)*|AC|/2 = (2/3)*|AC|^2
Но |AC| равна 15*cos(A/2), где по формуле косинуса половинного угла cos(A/2) = корень((1+cos(A))/2) = корень((1+3/5)/2) = корень(4/5).
То есть S = (2/3)*(15*корень(4/5))^2 = (2/3)*15*15*(4/5) = 2*4*15 = 120 - такое число есть среди ответов.
Если при пересечении двух прямых секущей: 1)накрест лежащие углы равны, или 2)соответственные углы равны, или 3)сумма односторонних углов равна 180°, то прямые параллельны.
Доказательство. Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны. Например, ∠ 4 = ∠ 6. Докажем, что а || b.
Предположим, что прямые а и b не параллельны. Тогда они пересекаются в некоторой точке М и, следовательно, один из углов 4 или 6 будет внешним углом треугольника АВМ. Пусть для определенности ∠ 4 — внешний угол треугольника АВМ, а ∠ 6 — внутренний. Из теоремы о внешнем угле треугольника следует, что ∠ 4 больше ∠ 6, а это противоречит условию, значит, прямые а и 6 не могут пересекаться, поэтому они параллельны.
Нетрудно видеть, что прямоугольные треугольники ACL и ANK подобны. И коэффициент подобия по отношению их гипотенуз |AL|/|AK| = (9+6)/9 = 15/9 = 5/3.
Стало быть и их катеты |AC|/|AN| = 5/3. Но прямоугольный треугольник ACN (в котором эти стороны гипотенуза и катет) подобен всему треугольнику ABC в котором стало быть стороны |AB|, |AC| и |CB|относятся как 5:3:4 (4 = корень(5*5-3*3).
Достаточно узнать длину |AC| чтобы найти всю площадь. S = |AC|*|CB|/2 = |AC|*(4/3)*|AC|/2 = (2/3)*|AC|^2
Но |AC| равна 15*cos(A/2), где по формуле косинуса половинного угла cos(A/2) = корень((1+cos(A))/2) = корень((1+3/5)/2) = корень(4/5).
То есть S = (2/3)*(15*корень(4/5))^2 = (2/3)*15*15*(4/5) = 2*4*15 = 120 - такое число есть среди ответов.
Если при пересечении двух прямых секущей:
1)накрест лежащие углы равны, или
2)соответственные углы равны, или
3)сумма односторонних углов равна 180°, то прямые параллельны.
Доказательство.
Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны. Например, ∠ 4 = ∠ 6. Докажем, что а || b.
Предположим, что прямые а и b не параллельны. Тогда они пересекаются в некоторой точке М и, следовательно, один из углов 4 или 6 будет внешним углом треугольника АВМ. Пусть для определенности ∠ 4 — внешний угол треугольника АВМ, а ∠ 6 — внутренний. Из теоремы о внешнем угле треугольника следует, что ∠ 4 больше ∠ 6, а это противоречит условию, значит, прямые а и 6 не могут пересекаться, поэтому они параллельны.