К плоскости прямоугольного треугольника АВС с углом С = 90° через вершину В, проведена перпендикулярная прямая «а», угол САВ = 30°, АС = 6, угол МВА = 60°. Найти длину отрезка МС.
Координаты вектора равны разности соответствующих координат точек его конца и начала ab{х2-х1;y2-y1;z2-z1}.
Модуль вектора (его длина) равен квадратному корню из суммы квадратов его координат.
А. DF=√(1²+1²+(-4)²)=√18. MC=√((-1)²+(-1)²+4²)=√18.
Б. CF=√(7²+7²+(-6)²)=√134. DM=√((-5)²+(-5)²+(-2)²)=√54.
B. CD=√(6²+6²+(-2)²)=√76. MF=√(6²+6²+(-2)²)=√76.
Г. CD=√(6²+6²+(-2)²)=√76. FМ=√((-6)²+(-6)²+2²)=√76.
Если указанные равенства относятся к векторам, то верное равенство под буквой В, так как под буквами А и Г равны по модулю, но противоположно направлены.
1. АВ=√(8²+(-6)²+10²)=10√2
алгоритм - от координат конца отрезка отняли координаты начала. результаты возвели в квадрат, сложили и извлекли корень квадратный из суммы.
2) х=1; у=-1;z=1
алгоритм: сложили соответствующие координаты и поделили каждую на два.
2. 1)АВ(9;-10;7), СВ(4;2;-3) алгоритм : от координат конца отняли координаты начала вектора.
2)IАВI=√(9²+(-10)²+7²)=√230
3) 2АВ+3СВ=2*(9;-10;7)+3(4;2;-3)=(30;-14;5)
2АВ-3СВ=2*(9;-10;7)-3(4;2;-3)=(60;-26;23)
4) IСВI=√(16+4+9)=√29; АВ*СВ/(IАВI*IСВI)=
(36-20-21)/(√230*√29)=-5/√6670≈-5/81.67-0.0612
3. а)-15х-48-27=0⇒х=75/(-15)=-5 скалярное произведение равно нулю.
б)х/(-15)= -4/12= 3/(-9) соответствующие координаты пропорциональны х=5
Даны координаты точек С(-2;0;3), D(4;6;1), F(5;7-3), M(-1;1;-1)
Координаты вектора равны разности соответствующих координат точек его конца и начала ab{х2-х1;y2-y1;z2-z1}.
Модуль вектора (его длина) равен квадратному корню из суммы квадратов его координат.
А. DF=√(1²+1²+(-4)²)=√18. MC=√((-1)²+(-1)²+4²)=√18.
Б. CF=√(7²+7²+(-6)²)=√134. DM=√((-5)²+(-5)²+(-2)²)=√54.
B. CD=√(6²+6²+(-2)²)=√76. MF=√(6²+6²+(-2)²)=√76.
Г. CD=√(6²+6²+(-2)²)=√76. FМ=√((-6)²+(-6)²+2²)=√76.
Если указанные равенства относятся к векторам, то верное равенство под буквой В, так как под буквами А и Г равны по модулю, но противоположно направлены.
ответ: верное равенство В.