АВСД - трапеция, АД-ВС=14 см, Р=86 см, ∠АВД=∠СВД, АВ=СД. В трапеции биссектриса отсекает от противоположного основания отрезок, равный боковой стороне, прилежащей к биссектрисе (свойство трапеции, да и параллелограмма тоже). В нашем случае биссектриса - это диагональ, значит АВ=АД. АВ=АД=СД, ВС=АД-14 ⇒ Р=4·АД-14, 86=4АД-14, АД=25 см. ВМ - высота на сторону АД. В равнобедренной трапеции АМ=(АД-ВС)/2=14/2=7 см. В тр-ке АВМ ВМ=√(АВ²-АМ²)=√(25²-7²)=24 см. ВС=АД-14=25-14=11 см. Площадь трапеции: S=(АВ+ВС)·ВМ/2=(25+11)·24/2=432 см² - это ответ.
В трапеции биссектриса отсекает от противоположного основания отрезок, равный боковой стороне, прилежащей к биссектрисе (свойство трапеции, да и параллелограмма тоже). В нашем случае биссектриса - это диагональ, значит АВ=АД.
АВ=АД=СД, ВС=АД-14 ⇒ Р=4·АД-14,
86=4АД-14,
АД=25 см.
ВМ - высота на сторону АД.
В равнобедренной трапеции АМ=(АД-ВС)/2=14/2=7 см.
В тр-ке АВМ ВМ=√(АВ²-АМ²)=√(25²-7²)=24 см.
ВС=АД-14=25-14=11 см.
Площадь трапеции: S=(АВ+ВС)·ВМ/2=(25+11)·24/2=432 см² - это ответ.
BC:AC:AB=2:6:7 ВС=2х, АС=6х, АВ=7х
AB=BC+25 (см) Так как: АВ=ВС+25
7х = 2х+25
Найти: Р=? 5х = 25
х = 5
ВС=2х=10 (см), АС=6х=30(см), АВ=7х=35 (см)
Р = 10+30+35 = 75 (см)
ответ: 75 см